SECOND

MODSECURITY ek
HANDBOOK

The Complete Guide to the Popular
Open Source Web Application Firewall

Christian Folini

lvan Risti¢

Last update: Mon Nov 29 12:55:09 GMT 2021 (build 285)

ModSecurity Handbook

Second Edition

Christian Folini
Ivan Ristié¢

N Feist
- Ducky

LONDON

https://www.feistyduck.com

ModSecurity Handbook, Second Edition

by Christian Folini and Ivan Risti¢
Copyright © 2017 Feisty Duck Limited. All rights reserved.

ISBN: 978-1-907117-07-7
Published in July 2017 (build 285). First edition published in March 2010.

Feisty Duck Limited
www.feistyduck.com
contact@feistyduck.com

Production editor: Jelena Girié-Ristié¢
Copyeditor: Melinda Rankin
Proofreader: Sonia Saruba

Cover design: Peter Jovanovi¢

Cover illustration: Maja Veselinovi¢

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or

by any means, without the prior permission in writing of the publisher.

The author and publisher have taken care in preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in

connection with or arising out of the use of the information or programs contained herein.

ModSecurity is a registered trademark of Trustwave Holdings, Inc. All other trademarks and copyrights are the property of

their respective owners.

Feisty Duck Digital
Book Distribution

www.feistyduck.com

Licensed for the exclusive use of:
Michael McCrann <contact@123mail.org>

Table of Contents

L1 1 1 XXi
Preface to the Second Edition e XXiii
Preface to the First Edition oo i it XXV
Scope and Audience XXV
Contents XXVi
Updates XXiX
Feedback XXiX

About the Author XXiX

About the Technical Reviewer XXX
Acknowledgments XXX

. User Guide 1
L 11111 1T 3

Brief History of ModSecurity 3

What Can ModSecurity Do?)

Guiding Principles 7

Deployment Options 7

Getting Started 8

Hybrid Nature of ModSecurity 8

Main Areas of Functionality 9

What Rules Look Like 10

Transaction Lifecycle 11

Impact on Web Server 16

What's Next? 17

Resources 18

General Resources 18

Developer Resources 19

AuditConsole 20

Summary 20

2. INSTaAllAtionooeei e e, 21

Installation from Source
Downloading Releases
Downloading from Repository
Installation on Unix

Installation from Binaries

Fedora Core, Cent0S, and Red Hat Enterprise Linux

Debian and Ubuntu
Installation on Windows
Summary

d.Configuration ...t

Folder Locations
Configuration Layout
Adding ModSecurity to Apache
Powering Up

Request Body Handling
Response Body Handling
Filesystem Locations

File Uploads

Debug Log

Audit Log

Default Rule Match Policy
Handling Processing Errors
Verifying Installation
Summary

11 1T

Debug Log
Debugging in Production
Audit Log
Native Format Audit Log Entry Example
JSON Format Audit Log
Concurrent Audit Log
Remote Logging
Configuring Remote Logging
Activating Remote Logging
Troubleshooting Remote Logging
File Upload Interception
Storing Files
Inspecting Files
Integrating with ClamAV

22
22
23
24
21
28
28
28
29
3
32
34
35
36
36
38
39
40
40
41
42
42
44
45

47
48
49
51
53
53
54
56
57
59
60
61
61
63

Advanced Logging Configuration
Increasing Logging from a Rule
Dynamically Altering Logging Configuration
Removing Sensitive Data from Audit Logs
Selective Audit Logging
Summary
D RUIE LanNgUAZe BVBIVIBW . ..ottt ittt ettt e e e e e e e e eneeneenannannns
Anatomy of a Rule
Variables
Request Variables
Server Variables
Response Variables
Miscellaneous Variables
Parsing Flags
Collections
Time and Performance Variables
Operators
String Matching Operators
Numerical Operators
Validation Operators
Miscellaneous Operators
Actions
Disruptive Actions
Flow Actions
Metadata Actions
Variable Actions
Logging Actions
Special Actions
Miscellaneous Actions
Summary
6. Rule Language TUtorialoiiniiiiiii i e it aaeans
Introducing Rules
Working with Variables
Combining Rules into Chains
Operator Negation
Variable Counting
Using Actions
Understanding Action Defaults
Actions in Chained Rules

65
65
66
66
68
68
n
72
73
73
75
75
76
76
77
78
78
79
79
80
80
81
81
82
82
83
83
84
86
86
87
87
88
89
89
90
90
91
93

Unconditional Rules
Using Transformation Functions
Blocking
Changing Rule Flow
[f-Then-Else
Controlling Logging
Capturing Data
Variable Manipulation
Variable Expansion
Recording Data in Alerts
Adding Metadata
Rule ID Namespace
Embedded Versus Reverse Proxy Mode
Summary

1. Rule Configurationcooiiiiiiii i

Apache Configuration Syntax
Breaking Lines
Directives and Parameters
Spreading Configuration Across Files
Container Directives
Configuration Contexts
Configuration Merging

Configuration and Rule Inheritance
Configuration Inheritance
Rule Inheritance

Location-Specific Configuration Restrictions

SecDefaultAction Inheritance Anomaly
Rule Manipulation and Exclusion
Removing Rules at Configure-Time
Updating Rule Actions at Configure-Time
Updating Rule Targets at Configure-Time
Removing Rules at Runtime
Updating Rule Targets at Runtime
Configuration Tips
Summary

8. Persistent Storagecoviiiiii i

Manipulating Collection Records
Creating Records
Application Namespaces

94
94
96
96
97
98
99
100
101
102
103
105
106
107

109
110
111
111
113
113
115
115
116
116
117
118
118
119
120
121
122
122
123
124
125
126
126
127

Vi

Initializing Records

Controlling Record Longevity

Deleting Records

Detecting Very Old Records
Collection Variables

Built-In Variables

Variable Expiry

Variable Value Depreciation
Implementation Details

Retrieving Records

Storing a Collection

Record Limits
Applied Persistence

Periodic Alerting

Denial of Service Attack Detection

Brute Force Attack Detection
Session Management

Initializing Sessions

Blocking Sessions

Forcing Session Regeneration

Restricting Session Lifetime

Detecting Session Hijacking
User Management

Detecting User Sign-In

Detecting User Sign-Out
Summary

9. Practical Rule Writingccovriiiiiiii i

Whitelisting
Whitelisting Theory
Whitelisting Mechanics
Granular Whitelisting
Full Whitelisting Example
Virtual Patching

Vulnerability Versus Exploit Patching

Failings of Exploit Detection
Impedance Mismatch
Preferred Virtual Patching Approach
Whitelisting Rulesets
JSON Requests

128
128
129
130
131
131
132
133
134
134
135
136
137
138
140
142
145
145
147
147
148
151
153
153
155
155

157
157
158
159
159
160
162
162
163
164
165
168

vii

IP Address Reputation and Blacklisting
IP Address Blocking
Geolocation
Real-Time Block Lists
Local Reputation Management
Integration with Other Apache Modules
Conditional Logging
Header Manipulation
Securing Session Cookies
Advanced Blocking
Immediate Blocking
Keeping Detection and Blocking Separate
User-Friendly Blocking
External Blocking
Honeypot Diversion
Delayed Blocking
Score-Based Blocking
Making the Most of Regular Expressions
How ModSecurity Compiles Patterns
Changing How Patterns Are Compiled
Common Pattern Problems
Regular Expression Denial of Service
Resources
Working with Rulesets
Deploying Rulesets
Writing Rules for Distribution
Summary

10.PerfOrmManCe . ..ottt eeaens

Understanding Performance
Top 10 Performance Rules
Performance Tracking
Performance Metrics
Performance Logging
Real-Time Performance Monitoring
Load Testing
Rule Benchmarking
Preparation
Test Data Selection
Performance Baseline

169
170
171
172
173
174
175
175
176
177
177
178
179
181
182
182
183
184
184
186
187
187
189
189
190
192
194
195
195
196
198
198
199
199
200
204
204
205
207

viii

Optimizing Pattern Matching 209

Rule per Keyword Approach 209

Combined Regular Expression Pattern 210

Optimized Regular Expression Pattern 210

Parallel Pattern Matching 212

Test Results 212

Summary 213

11, Content INjeCtionooeii i i e, 215
Writing Content Injection Rules 215
Communicating Back to the Server 217

Interrupting Page Rendering 218

Using External JavaScript Code 218
Communicating with Users 219
Summary 220
12.Writing Rules inLUaot e e 221
Rule Language Integration 221

Lua Rules Skeleton 222
Accessing Variables 222
Setting Variables 224
Logging 224

Lua Actions 224
Summary 225

T3 Handling XML . ..ottt e e 221
XML Parsing 227

DTD Validation 231

XML Schema Validation 232

XML Namespaces 233
XPath Expressions 236
XPath and Namespaces 237

XML Inspection Framework 238
Summary 240

14. Extending the Rule Languagec.coiiiiiniiiiii ittt e eaeaaanaaas 211
Extension Template 242
Adding a Transformation Function 244
Adding an Operator 247
Adding a Variable 251
Adding a Request Body Processor 254
Summary 257

II. Reference Manual 259

LT =011 261

SecAction 261
SecArgumentSeparator 262
SecAuditEngine 262
SecAuditLog 263
SecAuditLog? 264
SecAuditLogDirMode 264
SecAuditLogFileMode 265
SecAuditLogFormat 266
SecAuditLogParts 266
SecAuditLogRelevantStatus 267
SecAuditLogStorageDir 268
SecAuditLogType 268
SecCacheTransformations 269
SecChrootDir 270
SecCollectionTimeout 271
SecComponentSignature 271
SecConnEngine 271
SecConnReadStateLimit 272
SecConnWriteStateLimit 273
SecContentlInjection 274
SecCookieFormat 274
SecCookieV0Separator 274
SecDataDir 275
SecDebuglog 275
SecDebugloglevel 276
SecDefaultAction 276
SecDisableBackendCompression 277
SecGeoLookupDb 277
SecGsbLookupDhb 278
SecGuardianLog 279
SecHashEngine 279
SecHashKey 280
SecHashMethodPm 281
SecHashMethodRx 281
SecHashParam 282
SecHttpBlKey 283
SeclnterceptOnError 283

SecMarker 284

SecPcreMatchLimit
SecPcreMatchLimitRecursion
SecReadStateLimit
SecRemoteRules
SecRemoteRulesFailAction
SecRequestBodyAccess
SecRequestBodylnMemoryLimit
SecRequestBodyLimit
SecRequestBodyLimitAction
SecRequestBodyNoFilesLimit
SecResponseBodyAccess
SecResponseBodyLimit
SecResponseBodyLimitAction
SecResponseBodyMimeType

SecResponseBodyMimeTypesClear

SecRule

SecRuleEngine
SecRulelnheritance
SecRulePerfTime
SecRuleRemoveByld
SecRuleRemoveByMsg
SecRuleRemoveByTag
SecRuleScript
SecRuleUpdateActionByld
SecRuleUpdateTargetByld
SecRuleUpdateTargetByMsg
SecRuleUpdateTargetByTag
SecSensorld
SecServerSignature
SecStatusEngine
SecStreamInBodylnspection
SecStreamOutBodylnspection
SecTmpDir
SecTmpSaveUploadedFiles
SecUnicodeCodePage
SecUnicodeMapFile
SecUploadDir
SecUploadFileLimit
SecUploadFileMode

284
285
285
286
286
287
288
288
289
289
290
290
291
291
292
292
293
293
294
294
295
295
296
298
299
300
300
301
302
302
303
304
304
305
305
305
306
306
307

Xi

16. Variables

SecUploadKeepFiles
SecWebAppld
SecWriteStateLimit
SecXmlExternalEntity

ARGS
ARGS_COMBINED_SIZE
ARGS_GET
ARGS_GET_NAMES
ARGS_NAMES

ARGS_POST
ARGS_POST_NAMES
AUTH_TYPE

DURATION

ENV

FILES
FILES_COMBINED_SIZE
FILES_NAMES

FILES_SIZES
FILES_TMP_CONTENT
FILES_TMPNAMES
FULL_REQUEST
FULL_REQUEST_LENGTH
GEO

GLOBAL

HIGHEST_SEVERITY
INBOUND_DATA_ERROR

P

MATCHED_VAR
MATCHED_VAR_NAME
MATCHED_VARS
MATCHED_VARS_NAMES
MODSEC_BUILD
MULTIPART_BOUNDARY_QUOTED
MULTIPART_BOUNDARY_WHITESPACE
MULTIPART_CRLF_LF_LINES
MULTIPART_DATA_AFTER
MULTIPART_DATA_BEFORE
MULTIPART_FILE_LIMIT_EXCEEDED

307
308
309
309
n
311
312
312
312
312
312
312
313
313
313
313
313
314
314
314
314
314
314
315
315
316
316
316
317
317
317
318
318
318
318
318
319
319
319

Xii

MULTIPART_FILENAME
MULTIPART_HEADER_FOLDING

MULTIPART_INVALID_HEADER_FOLDING

MULTIPART_INVALID_PART
MULTIPART_INVALID_QUOTING
MULTIPART_LF_LINE

MULTIPART_MISSING_SEMICOLON

MULTIPART_NAME
MULTIPART_STRICT_ERROR

MULTIPART_UNMATCHED_BOUNDARY

OUTBOUND_DATA_ERROR
PATH_INFO

PERF_ALL
PERF_COMBINED
PERF_GC

PERF_LOGGING
PERF_PHASE1
PERF_PHASE?
PERF_PHASE3
PERF_PHASE4
PERF_PHASE5
PERF_RULES
PERF_SREAD
PERF_SWRITE
QUERY_STRING
REMOTE_ADDR
REMOTE_HOST
REMOTE_PORT
REMOTE_USER
REQBODY_ERROR
REQBODY_ERROR_MSG
REQBODY_PROCESSOR
REQUEST_BASENAME
REQUEST_BODY
REQUEST_BODY_LENGTH
REQUEST_COOKIES
REQUEST_COOKIES_NAMES
REQUEST_FILENAME
REQUEST_HEADERS

319
320
320
320
320
320
321
321
321
322
323
323
323
323
324
324
324
324
324
324
325
325
326
326
326
326
327
327
327
327
328
328
328
329
329
329
329
329
330

Xiii

REQUEST_HEADERS_NAMES 330

REQUEST_LINE 330
REQUEST_METHOD 330
REQUEST_PROTOCOL 330
REQUEST_URI 331
REQUEST_URI_RAW 331
RESOURCE 331
RESPONSE_BODY 332
RESPONSE_CONTENT_LENGTH 332
RESPONSE_CONTENT_TYPE 332
RESPONSE_HEADERS 332
RESPONSE_HEADERS_NAMES 333
RESPONSE_PROTOCOL 333
RESPONSE_STATUS 333
RULE 333
SCRIPT_BASENAME 334
SCRIPT_FILENAME 334
SCRIPT_GID 334
SCRIPT_GROUPNAME 334
SCRIPT_MODE 334
SCRIPT_UID 335
SCRIPT_USERNAME 335
SDBM_DELETE_ERROR 335
SERVER_ADDR 335
SERVER_NAME 335
SERVER_PORT 335
SESSION 336
SESSIONID 336
STREAM_INPUT_BODY 337
STREAM_OUTPUT_BODY 337
TIME 337
TIME_DAY 337
TIME_EPOCH 337
TIME_HOUR 337
TIME_MIN 338
TIME_MON 338
TIME_SEC 338
TIME_WDAY 338

TIME_YEAR 338

X 338

UNIQUE_ID 339
URLENCODED_ERROR 339
USER 339
USERAGENT_IP 339
USERID 340
WEBAPPID 340
WEBSERVER_ERROR_LOG 340
XML 340
17. Transformation Functionsot i 343
baseb4Decode 344
base64DecodeExt 344
baseb4Encode 344
cmdLine 344
compressWhitespace 345
cssDecode 345
escapeSeqDecode 346
hexDecode 346
hexEncode 346
htmlIEntityDecode 346
jsDecode 347
length 347
lowercase 347
md5 347
none 348
normalisePath 348
normalisePathWin 348
normalizePath 348
normalizePathWin 348
parityEven7bit 348
parity0dd7bit 349
parityZero7bit 349
removeComments 349
removeCommentsChar 349
removeNulls 349
removeWhitespace 349
replaceComments 349
replaceNulls 350

shal 350

XV

18. Operators

sqlHexDecode
trim

trimLeft
trimRight
urlDecode
urlDecodeUni
urlEncode
utf8toUnicode

beginsWith
contains
containsWord
detectSQLI
detectXSS
endsWith

eq

fuzzyHash

ge

geolookup
gshLookup

gt

inspectFile
ipMatch
ipMatchF
ipMatchFromFile
le

It

noMatch

pm

pmf

pmFromFile

rbl

rsub

X

streq

strmatch
unconditionalMatch
validateByteRange
validateDTD

350
350
350
351
351
351
351
352
353
353
353
354
354
354
354
355
355
355
356
356
357
357
358
358
358
359
359
359
359
360
360
361
362
362
363
363
363
364
364

Xvi

validateHash 364

validateSchema 365
validateUrlEncoding 365
validateUtf8Encoding 365
verifyCC 366
verifyCPF 366
verifySSN 367
within 367
L TR T £ 369
accuracy 369
allow 369
append 370
auditlog 371
block 371
capture 372
chain 372
ctl 373
ctl:auditEngine 373
ctl:auditLogParts 373
ctl:debugloglevel 374
ctl:forceRequestBodyVariable 374
ctl:hashEnforcement 374
ctl:hashEngine 374
ctl:requestBodyAccess 375
ctl:requestBodyLimit 375
ctl:requestBodyProcessor 375
ctl:responseBodyAccess 375
ctl:responseBodyLimit 376
ctl:ruleEngine 376
ctl:ruleRemoveByld 376
ctl:ruleRemoveByMsg 376
ctl:ruleRemoveByTag 377
ctl:ruleRemoveTargetByld 377
ctl:ruleRemoveTargetByMsg 377
ctl:ruleRemoveTargetByTag 377
deny 378
deprecatevar 378
drop 378

exec 379

Xvii

expirevar

id

initcol

log

logdata

maturity

msg

multiMatch

noauditlog

nolog

pass

pause

phase

prepend

proxy

redirect

rev

sanitiseArg
sanitiseMatched
sanitiseMatchedBytes
sanitiseRequestHeader
sanitiseResponseHeader
sanitizeArg
sanitizeMatched
sanitizeMatchedBytes
sanitizeRequestHeader
sanitizeResponseHeader
severity

setuid

setsid

setenv

setvar

skip

skipAfter

status

t

tag

ver

xmins

379
380
381
381
381
382
382
382
382
382
383
383
384
384
385
385
385
385
386
386
386
387
387
387
387
387
387
387
388
388
389
389
390
390
390
390
391
391
391

Xviii

20.Data FOrMaAts ..ottt s 393

Alerts 393
Alert Action Description 393

Alert Justification Description 394
Metadata 396
Escaping 397

Alerts in the Apache Error Log 398

Alerts in Audit Logs 398

Audit Log 399
Parts in Native Format 400

Parts in JSON Format 408
Storage Formats 412
Remote Logging Protocol 413

11 415

Xix

Foreword

As T write this in April 2017, it's been about 14 years since the release of the first-ever
version of ModSecurity. The idea for it was in my head probably for a bit longer, but,
still—that was a long time ago. The first version wasn't very good, but I persisted and kept
steadily improving the project. ModSecurity 2—a complete rewrite based on several years of
experience protecting web applications—was much better and very much the tool you know
today.

What'’s really amazing, however, is that the project took on a life of its own. I left ModSe-
curity in 2009, but it continued to grow and improve. As I write this, there is another
rewrite in progress (version 3), this time to natively support multiple web server platforms.
The Core Rule Set, an OWASP project, is about to have its third release—a major one.
Amazingly, ModSecurity remains the only mainstream open source web application firewall
engine. After the license change (thanks, Trustwave!), ModSecurity was incorporated into
commercial tools. Its rule-based approach influenced the entire web application firewall
industry. Even some vendors that do not use ModSecurity now provide rule-level compati-
bility.

The first edition of this book was my parting gift to the community; I simply didn’t think
it would be appropriate to go away without documenting everything I had in my head.
Fast-forward several years later, and the book is mildly out of date, but I'm no longer the
person who can do anything about it. This is where Christian Folini comes in to save the
day.

Christian was one of the early adopters of ModSecurity. His early work on REMO, a
whitelisting rule editor, showed the best way to use a web application firewall with a positive
security approach, which is superior to blacklisting. Over the years, Christian continued
to spend time on Apache and ModSecurity and became part of the Core Rule Set team.
Who better to take up the torch and update this book than him? It makes me happy that
the ModSecurity community once again will have fully up-to-date documentation at its
disposal.

Thank you, Christian, for taking on the important task of making this book new again!

XXi

Preface to the Second Edition

I was an early adopter of ModSecurity. I first came across it in about 2005 and was
immediately intrigued. Here was a tool that could help me improve my life, indirectly, by
improving the security of the systems I manage. I started to use it, although you could say it
grew on me slowly over time. You see, I'm a medievalist who landed in web server security
when my application for a job at an open air museum was declined. In parallel with the
new job, I was also running one of the better known reenactment companies, recreating
medieval life for a museum audience. I got married, we started a family, we purchased a
historical house (with all the strings attached), and though ModSecurity became more and
more important to me over the years, it remained a day job because evenings and weekends
were already occupied.

I slowly started to teach Apache and ModSecurity courses, I published blog posts and
tutorials on the use of ModSecurity, and, last year, the day job started to expand into
evenings and weekends when I became involved with the OWASP ModSecurity Core Rule
Set project. I joined a very active team and became invested in the development of the
Core Rules Paranoia Mode and Sampling Mode, two core features of the Core Rule Set 3.0
release.

When Ivan asked me to write this new edition of ModSecurity Handbook, it felt like a
culmination of my work with ModSecurity! This work allowed me to explore features and
areas I hadn’t used before. It gave me a better view of ModSecurity and—shhh, don't tell
anyone—I am probably the person who profited most from it.

I started with an overhaul of the reference section of the book. About one-third of it is
brand-new, because many new features were added to ModSecurity in the six years since the
first edition of this book was published. Another significant effort was adding more detail
throughout and many examples to better explain what each feature did. This is especially
visible with the transformations that now come with handy “before” and “after” examples,
which provide much-needed clarity about exactly how data is changed. The idea behind this
expansion was to describe the usage of the software in a consistent way and to give people
who know the online reference substantial value when they buy the book.

XXiii

The prose part of the book saw fewer updates: some additions to most chapters, small fixes
here and there, rewordings, and removing legacy explanations or historical information
(e.g., new features in version 2.5.12). All in all, I blew away the dust from that part of the
book. This is not true for Chapter 10, Performance, which was updated with substantial
new data obtained from many different test runs in multiple scenarios. This allowed me
to assess performance anew, and I was able to show that the performance of ModSecurity
transformations now is not quite how it was when the first edition was written (now its
better!).

You don’t write a book on your own, and you don't get into a position to write a technical
book on your own, either. Many people contributed in their own way to my work, and I
can only name a few of them here. Let their names stand in for many more people like
them. First and foremost, my thanks belong to my company of many years, netnea in Berne,
Switzerland. Netnea’s decision to hire a PhD (me, still hot from the press and hitherto
specialized in German mysticism) allowed me to start on this adventure in the first place.

Jelena Giri¢-Risti¢ from Feisty Duck, this books publisher, accompanied me from the
moment I accepted this project, and her good spirit kept me working during days when
gray clouds covered the sky. Ivan, who wrote the first edition of this book, acted as a
technical editor this time around and offered his guiding hand to help achieve clarity when
explaining complex topics. Osama Elnaggar, Walter Hop, Marco Pizzoli, and Chaim Sanders
reviewed the manuscript and pointed out shortcomings that I had overlooked. Finally,
Melinda Rankin came in as copyeditor when they were done and gave the manuscript a
most welcome polish.

My marvelous wife Saara is the rare sort of a pastor running a Linux desktop and helping
her techie husband configure his mobile phone. She put up with me when I grew grumpy
or felt lost with all this book writing, and she cheered me up with her understanding. Our
two boys had to put up with me as well, and I feel sorry for all the playing and fun that we
missed out on in recent months.

But in the end, what really made this book possible was my experience working with
Apache and ModSecurity over the years, in turn possible thanks to my customers, who
trusted my growing knowledge and who placed their security projects into my hands. I can’t
name them all, of course, but I will name Swiss Post, my most important customer. The
management at Swiss Post allowed me and the engineering team to invest into a carefully
designed reverse proxy platform we are all very proud of. This success was of primordial
importance to this book. Other customers bring new challenges with every project, and
they all teach me new concepts and new ways to run Apache and ModSecurity. It’s a great
adventure every day.

XXiv Preface to the Second Edition

Preface to the First Edition

I didn’t mean to write this book; I really didn’t. In late 2008 I started to work on the second
edition of Apache Security, deciding to rewrite the ModSecurity chapter first. A funny thing
happened: the ModSecurity chapter kept growing and growing. It hit 40 pages; it hit 80
pages; and then I realized that I was nowhere near the end. That was all the excuse I
needed to put Apache Security aside—for the time being—and focus on a ModSecurity book
instead.

I admit that I couldn't be happier, although it was an entirely emotional decision. After
spending years working on ModSecurity, I knew it had so much more to offer, yet the
documentation wasn’t there to show the way—but it is now, I'm thrilled to say. The package
is complete. You have an open source tool able to compete with the best commercial
products out there, and you have the documentation to match.

With this book, I'm also trying something completely new: continuous writing and publish-
ing. You see, I published my first book with a major publisher, but I never quite liked the
process. It was too slow. You write a book pretty much in isolation, you publish it, and then
you never get to update it. I was never happy with that, and that’s why I decided to do things
differently this time.

Simply said, ModSecurity Handbook is a living book. Every time I make a change, a new
digital version is made available to you. If I improve the book based on your feedback, you
get the improvements as soon as I make them. If you prefer a paper book, you can still get
it, of course, through the usual channels. Although I can’t do anything about updating the
paper version of the book, we can narrow the gap slightly by pushing out book updates even
between editions, meaning that even when you get the paper version (as most people seem
to prefer to), it's never going to be too much behind the digital version.

Scope and Audience

This book exists to document every single aspect of ModSecurity and to teach you how
to use it. It's as simple as that. ModSecurity is a fantastic tool, but it’s let down by the
poor quality of the documentation. As a result, the adoption is not as good as it could be;

XXV

application security is difficult on its own, and you don't really want to struggle with poorly
documented tools too. I felt a responsibility to write this book and show how ModSecurity
can compete with commercial web application firewalls, in spite of being the underdog.
Now that the book is finished, I feel I've done a proper job with ModSecurity.

If you are interested in application security, you are my target audience. Even if youre
not interested in application security as such, and only want to deal with your particular
problems (it’s difficult to find a web application these days that’s without security problems),
you are still my target audience.

You don’t need to know anything about ModSecurity to get started. If you just follow the
book from the beginning, you’ll find that every new chapter advances a notch. Even if you're
a long-time ModSecurity user, I believe you’ll benefit from a fresh start. I'll let you in on a
secret: I have. There’s nothing better for completing one’s knowledge than having to write
about a particular topic. I suspect that long-time ModSecurity users will especially like the
second half of the book, which discusses many advanced topics and often covers substantial
new ground.

However, there’s only so much a book can cover. ModSecurity Handbook assumes you
already know how to operate the Apache web server. You don't have to be an expert, but
you do need to know how to install, configure, and run it. If you don’t know how to do that
already, you should get my first book, Apache Security. I wrote it five years ago, but it’s still
remarkably fresh. (Ironically, it is only the ModSecurity chapter in Apache Security that is
completely obsolete—but that’s why you have this book.)

On the other end, ModSecurity Handbook will teach you how to use ModSecurity and write
good rules, but it won’t teach you application security. In my earlier book, Apache Security,
I included a chapter that served as an introduction to application security, but even then
I was barely able to mention all that I wanted, and the chapter was still the longest in the
book. Since then, the application security field has exploded, and now you have to read
several books and dozens of research papers just to begin to understand it.

Contents

Once you move past the first chapter, which is the introduction to the world of ModSecuri-
ty, the rest of the book consists of roughly three parts. In the first part, you learn how to
install and configure ModSecurity. In the second part, you learn how to write rules. As for
the third part, you could say that it contains the advanced stuff—a series of chapters, each
dedicated to one important aspect of ModSecurity. At the end of the book is the official
reference documentation, reproduced with the permission from Breach Security.

Chapter 1, Introduction, is the foundation of the book. It contains a gentle introduction to
ModSecurity, and then explains what it can and cannot do. The main usage scenarios are
listed to help you identify where you can use ModSecurity in your environment. The middle

XXV Preface to the First Edition

of the chapter goes under the hood of ModSecurity to give you insight into how it works,
and it finishes with an overview of the key areas you'll need to learn in order to deploy it.
The end of the chapter lists a series of resources (sites, mailing lists, tools, etc.) that you'll
find useful in your day-to-day work.

Chapter 2, Installation, teaches you how to install ModSecurity, either compiling from
source (using one of the released versions or downloading straight from the development
repository) or by using one of the available binary packages, on Unix and Windows alike.

Chapter 3, Configuration, explains how each of the available configuration directives should
be used. By the end of the chapter, you'll have a complete overview of the configuration
options and a solid default configuration for all your ModSecurity installations.

Chapter 4, Logging, addresses the logging features of ModSecurity. The two main logging
facilities explained are the debug log, which is useful in rule writing, and the audit log, which
is used to log complete transaction data. Special attention is given to remote logging, which
you'll need to manage multiple sensors or to use any of the user-friendly tools for alert
management. File interception and validation is covered in detail. The chapter ends with an
advanced section of logging, which explains how to selectively log traffic and how to use the
sanitization feature to prevent sensitive data from being stored in the logs.

Chapter 5, Rule Language Overview, is the first of three chapters that address rule writing.
This chapter contains an overview of the entire rule language, which will get you started
and provide a feature map to which you can return whenever you need to deal with a new
problem.

Chapter 6, Rule Language Tutorial, teaches how to write rules and how to write them well.
It’s a fun chapter that adopts a gradual approach, introducing features one by one. By the
end of the chapter, you'll know everything about writing individual rules.

Chapter 7, Rule Configuration, completes the topic of rule writing. It takes a step back to
view the rules as the basic block for policy building. You'll first learn how to put a few rules
together and add them to the configuration, then learn how the rules interact with Apache’s
ability to use different configuration contexts for different sites and different locations
within sites. The chapter spends a great deal of time making sure you take advantage of the
inheritance feature, which helps make ModSecurity configuration much easier to maintain.

Chapter 8, Persistent Storage, is quite possibly the most exciting chapter in the book. It
describes the persistent storage mechanism, which enables you to track data and events over
time and thus opens up an entire new dimension of ModSecurity. This chapter is also the
most practical one in the entire book. It gives you the rules for periodic alerting, brute force
attack detection, denial of service attack detection, session and user management, fixing
session management weaknesses, and more.

Chapter 9, Practical Rule Writing, is, as the name suggests, a tour through many of the
practical activities you will perform in your day-to-day work. The chapter starts by covering

Contents XXVii

whitelisting, virtual patching, IP address reputation, and blacklisting. You'll then learn
how to integrate with other Apache modules, with practical examples that show how to
perform conditional logging and fix insecure session cookies. Special attention is given to
the topic of blocking; several approaches, starting from the simple and moving to the very
sophisticated, are presented. A section on regular expressions gets you up to speed with
the most important ModSecurity operator. The chapter ends with a discussion of rulesets,
discussing how to use the rulesets others have written and how to write your own.

Chapter 10, Performance, covers several performance-related topics. It opens with an
overview of how ModSecurity usually spends its time, a list of common configuration
mistakes that should be avoided, and a list of approaches that result in better performance.
The second part of the chapter describes how to monitor ModSecurity performance in
production. The third part tests the publicly available rulesets in order to give you a taste of
what they’re like, as well as to document a methodology you can use to test your own rules.
The chapter then moves to ruleset benchmarking, which is an essential part of the process
of rule writing. The last part of this chapter gives practical advice on how to use regular
expressions and parallel matching, comparing several approaches and explaining when to
use them.

Chapter 11, Content Injection, explains how to reach from ModSecurity, which is a server-
side tool, right into a user’s browser and continue with the inspection there. This feature
makes it possible to detect attacks that were previously thought to be undetectable by a
server-side tool—for example, DOM-based cross-site scripting attacks. Content injection
also comes in handy if you need to communicate with your users—for example, to tell them
that they have been attacked.

Chapter 12, Writing Rules in Lua, discusses a gem of a feature: writing rules using the Lua
programming language. The rule language of ModSecurity is easy to use and can get a lot
done, but for really difficult problems you may need the power of a proper programming
language. In addition, you can use Lua to react to events, and it’s especially useful when
integrating with external systems.

Chapter 13, Handling XML, covers the XML capabilities of ModSecurity in detail. You'll
learn how to validate XML using either DTDs or XML Schemas and how to combine
XPath expressions with the other features ModSecurity offers to perform both whitelist- and
blacklist-based validation. The XML features of ModSecurity have traditionally been poorly
documented; here, you'll find details never covered before. The chapter ends with an XML
validation framework you can easily adapt for your needs.

Chapter 14, Extending the Rule Language, discusses how you can extend ModSecurity
to implement new functionality. It gives several step-by-step examples, explaining how
to implement a transformation function, an operator, and a variable. Of course, with
ModSecurity being open source, you can extend it directly at any point, but when you use

Xxviii Preface to the First Edition

the official APIs, you avoid making a custom version of ModSecurity (which is generally
time-consuming because it prevents upgrades).

Updates

If you purchased this book directly from Feisty Duck,! your purchase includes access to
newer digital versions of the book. Updates are made automatically after I update the
manuscript, which I keep in DocBook format in a Subversion repository. At the moment,
there is a script that runs every hour and rebuilds the book when necessary. Whenever you
visit your personal digital download link, you get the most recent version of the book.

In the first two years of its life, I kept ModSecurity Handbook up-to-date with every ModSe-
curity release. There was a full revision in February 2012, which made the book essentially
as good and as current as it was on day of the first release back in 2010. Don’t take my past
performance as a guarantee of what is going to happen in the future, however. At the launch
in 2010, I offered a guarantee that the book will be kept up-to-date for at least a year from
your purchase. I dropped that promise at the end of 2011, because I could see the possibility
that I would stop with the updates at some point. I will keep my promise until the end of
2012, but I don’t know what will happen after that.

Feedback

To get in touch with me, please write to ivanr@webkreator.com. I would like to hear from
you very much, because I believe that a book can fulfill its potential only through the
interactions among its author(s) and its readers. Your feedback is particularly important
when a book is continuously updated, like this one is. When I change the book as a result
of your feedback, all the changes are immediately delivered back to you. There’s no more
waiting for years to see improvements!

About the Author

Ivan Risti¢ is a respected security expert and author, known especially for his contribution
to the web application firewall field and the development of ModSecurity, the open source
web application firewall. He is also the author of Apache Security, a comprehensive security
guide for the Apache web server. A frequent speaker at computer security conferences,
Ivan is an active participant in the application security community, a member of the Open
Web Application Security Project (OWASP), and an officer of the Web Application Security
Consortium (WASC).

1 Feisty Duck web site (Feisty Duck, retrieved 29 Dec 2016)

Updates XXiX

https://www.feistyduck.com

About the Technical Reviewer

Brian Rectanus is a developer turned manager in the web application security field. He
has worked in the past on various security software-related projects, such as the IronBee
open source WAF framework, the ModSecurity open source WAF, and the Suricata open
source IDS/IPS. Brian is an open source advocate and proud "NIX-loving, Mac-using, non-
Windows user who has been writing code on various 'NIX platforms with vi since 1993.
Today, he still does all his development work in the more modern vim editor—like there
is any other—and loves every bit of it. Brian has spent the majority of his career working
with web technology from various perspectives, be it manager, developer, administrator,
or security assessor. Brian has held many certifications in the past, including GCIA and
GCIH certification from the SANS Institute and a BS in computer science from Kansas State
University.

Acknowledgments

To begin with, I would like to thank the entire ModSecurity community for their support,
and especially all of you who used ModSecurity and sent me your feedback. ModSecurity
wouldn’t be what it is without you. Developing and supporting ModSecurity was a remark-
able experience; I hope you enjoy using it as much as I enjoyed developing it.

I would also like to thank my former colleagues from Breach Security, who gave me a
warm welcome, even though I joined them pretty late in the game. I regret that, due to
my geographic location, I didn’t spend more time working with you. I would especially
like to thank—in no particular order—Brian Rectanus, Ryan Barnett, Ofer Shezaf, and Avi
Aminov, who worked with me on the ModSecurity team. Brian was also kind to work with
me on the book as a technical reviewer, and I owe special thanks to him for ensuring I didn’t
make too many mistakes.

I mustn’t forget my copyeditor, Nancy Kotary, who was a pleasure to work with, despite
having to deal with DocBook and Subversion, none of which is in the standard copyediting
repertoire.

For some reason unknown to me, my dear wife Jelena continues to tolerate my long
working hours—probably because I keep promising to work less, even though that never
seems to happen. To her, I can only offer my undying love and gratitude for accepting me
for who I am. My daughter Iva, who's four, is too young to understand what she means to
me, but that’s all right; I have the patience to wait for another 20 years or so. She is the other
sunshine in my life.

XXX Preface to the First Edition

| User Guide

This part, with its 14 chapters, constitutes the main body of the book. The first chapter is the
introduction to ModSecurity and your map to the rest of the book. The remaining chapters
fall into roughly four groups: installation and configuration, rule writing, practical work, and

advanced topics.

1 Introduction

ModSecurity is a tool that will help you secure your web applications—no, scratch that:
ModSecurity is a tool that will help you sleep better at night; in this book, we'll explain
how. We usually call ModSecurity a web application firewall (WAF), the generally accepted
term to refer to the class of products designed specifically to secure web applications.
Other times, we call it an HTTP intrusion detection tool, because we think that name
better describes what ModSecurity does. Neither name is entirely adequate, but we don’t
have a better one. However, it doesn’t really matter what we call it. The point is that web
applications—yours, ours, everyone’s—are terribly insecure on average. We all struggle to
keep ahead of security issues and need any help we can get to handle them.

Ivan thought to create ModSecurity while he was responsible for the security of several
web-based products. He could see how insecure most web applications were, slapped
together with little time spent on design and even less time spent on understanding security
issues. Not only were web applications insecure, but people generally had little awareness of
whether they were being attacked or exploited. Most web servers kept only standard access
and error logs, and they didn’t say much.

ModSecurity will help you sleep better at night because, above all, it solves the visibility
problem: it lets you see your web traffic. That visibility is key to security; once you can see
HTTP traffic, you can analyze it in real time, record it as necessary, and react to the events.
The best part of this concept is that you get to do all of that without actually touching web
applications. Even better, the concept can be applied to any application—even if you can’t
access its source code.

Brief History of ModSecurity

Like many other open source projects, ModSecurity started out as a hobby. Back in 2002,
producing secure web applications was virtually impossible. (It's the same these days, sadly.)
However, that realization led to the idea of a tool that would sit in front of web applications
and control the flow of data to and from the system. The first version was released in

November 2002, but a few more months were needed before the tool became useful. Other
people started to learn about ModSecurity, and its popularity started to rise.

Initially, most development effort for the tool went into wrestling with Apache to make
request body inspection possible. Apache 1.3.x didn’t include any interception or filtering
APIs, but it was still possible to trick it into submission. Apache 2.x improved the situation
by providing APIs that allowed content interception, but no documentation was available.

By 2004, Ivan converted from obsessing about software development to obsessing about web
application security. He quit his job and started treating ModSecurity as a business. In the
summer of 2006, ModSecurity went head-to-head with other web application firewalls in an
evaluation conducted by Forrester Research, and it achieved great results. Later that year,
ModSecurity was acquired by Breach Security. A team of one eventually became a team of
many: Brian Rectanus came to work on ModSecurity, Ofer Shezaf embarked on the rules,
and Ryan C. Barnett handled community management and education. ModSecurity 2.0,
a complete rewrite, was released in late 2006. Breach Security also released ModSecurity
Community Console, which combined the functionality of a remote logging sensor and a
monitoring and reporting GUI.

In 2009, Ivan left Breach Security. He stayed involved with ModSecurity for a while, but
mostly worked on the first edition of this book. In his own words, he couldn't leave the
project if it wasn't properly documented. Brian Rectanus took the lead. In the meantime,
Ryan C. Barnett took charge of the ModSecurity rules and produced significant improve-
ments with Core Rule Set v2. In 2010, Trustwave acquired Breach Security and promised to
revitalize ModSecurity. The project was then handed to Ryan C. Barnett and Breno Silva.

Something remarkable happened in March 2011: Trustwave announced that it would
change the license of ModSecurity from GPLv2 to Apache Software License (ASLv2). This
was a great step toward a wider use of ModSecurity because ASL falls into the category of
permissive licenses. Later, the same change was announced for the Core Rule Set project,
which is hosted with the Open Web Application Security Project (OWASP). Subsequently,
commercial WAF offerings started to incorporate the ModSecurity engine and added the
OWASP ModSecurity Core Rules as a default ruleset. With version 2.7.0, ModSecurity was
ported to work with Nginx and IIS web servers, but these ports never achieved the stability
of the original version. This eventually led to a major rewrite that would be able to support
multiple platforms equally well. That will become ModSecurity 3.0, currently in the making.

In 2013, Felipe Costa took over the lead developer position from Breno, and when Ryan left
Trustwave in 2015 he handed over the rules to Chaim Sanders, who joined Trustwave in
2014 to support the project with coding and community management.

4 Chapter 1: Introduction

What Can ModSecurity Do?

ModSecurity is a toolkit for real-time web application monitoring, logging, debugging, and
access control. I like to think of it as an enabler. There are no hard rules telling you what to
do; instead, it’s up to you to choose your own path through the available features. That’s why
the title of this section asks what ModSecurity can do, not what it does.

The freedom to choose what to do is an essential part of ModSecurity’s identity and goes
well with its open source nature. With full access to the source code, your freedom to
choose extends to the ability to customize and extend the tool itself to make it fit your
needs. This is a matter not of ideology, but of practicality. I simply don’t want my tools to
restrict what I can do.

The following is a list of the most important usage scenarios for ModSecurity:

Real-time application security monitoring and access control
At its core, ModSecurity gives you access to the HTTP traffic stream in real time,
along with the ability to inspect it. This is enough for real-time security monitoring.
There’s an added dimension of what’s possible through ModSecurity’s persistent stor-
age mechanism, which enables you to track system elements over time and perform
event correlation. You can block reliably, if you so wish, because ModSecurity uses
full request and response buffering.

Virtual patching

Virtual patching is a concept that addresses vulnerability mitigation in a separate
layer, in which you get to fix problems in applications without having to touch
the applications themselves. Virtual patching is applicable to applications that use
any communication protocol, but it's particularly useful with HTTP, because traffic
generally can be well understood by an intermediary device. ModSecurity excels
at virtual patching because of its reliable blocking capabilities and the flexible rule
language that can be adapted to any need. Virtual patching is, by far, the activity
ModSecurity offers that requires the least investment, is the easiest to perform, and
that most organizations can benefit from straight away.

Full HTTP traffic logging

Web servers traditionally do very little when it comes to logging for security purpos-
es. They log very little by default, and even with a lot of tweaking you can’t get
all the data that you need. I have yet to encounter a web server that is able to
log full transaction data—but ModSecurity gives you the ability to log everything,
including raw transaction data, which is essential for forensics. In addition, you get
to choose which transactions are logged, which parts of a transaction are logged, and
which parts are sanitized. As a bonus, this type of detailed logging is also helpful for
application troubleshooting—not just security.

What Can ModSecurity Do? 5

Continuous passive security assessment

Security assessment is seen largely as an active scheduled event, in which an indepen-
dent team is sourced to try to perform a simulated attack. Continuous passive securi-
ty assessment is a variation of real-time monitoring in which instead of focusing on
the behavior of the external parties, you focus on the behavior of the system itself.
It’s an early warning system of sorts that can detect traces of many abnormalities and
security weaknesses before they are exploited.

Web application hardening

One of my favorite uses for ModSecurity is attack surface reduction, in which you
selectively narrow down the HTTP features youre willing to accept (e.g., request
methods, request headers, content types, etc.). ModSecurity can assist you in enforc-
ing many similar restrictions, either directly or through collaboration with other
Apache modules. For example, it’s possible to fix many session management issues, as
well as cross-site request forgery vulnerabilities.

Something small, yet very important to you

Real life often makes unusual demands of us, and when handling such demands,
the flexibility of ModSecurity comes in handy when you need it the most. You may
have to address a security need, or maybe you have a completely different issue; for
example, some people use ModSecurity as an XML web service router, combining its
ability to parse XML and apply XPath expressions with its ability to proxy requests.
Who knew?

Note

I'm often asked if ModSecurity can be used to protect Apache itself. The answer
is that it can, in some limited circumstances, but that it isn’t what it’s designed
for. You may sometimes be able to catch an attack with ModSecurity before it
hits a vulnerable spot in Apache or in a third-party module, but there’s a large
quantity of code that runs before ModSecurity. If there’s a vulnerability in that area,
ModSecurity won't be able to do anything about it.

What Are Web Application Firewalls, Anyway?

I said that ModSecurity is a web application firewall, but its a little known fact that no
one really knows what web application firewalls are. It is generally understood that a web
application firewall is an intermediary element (implemented either as a software add-on or
process, or as a network device) that enhances the security of web applications, but opinions
differ once you dig deeper. There are many theories that try to explain the different views, but
the best one I could come up with is that, unlike anything we had before, the web application
space is so complex that there is no easy way to classify what we do security-wise. Rather than
focus on the name, you should focus on what a particular tool does and how it can help.

Chapter 1: Introduction

Guiding Principles
There are three guiding principles on which ModSecurity is based:
Flexibility

ModSecurity was designed and built with a particular user in mind: a security expert
who needs to be able to intercept, analyze, and store HTTP traffic. I didn't see much
value in hard-coded functionality, because real life is so complex that everyone needs
to do things just slightly differently. ModSecurity achieves flexibility by providing
a powerful rule language, which allows you to do exactly what you need to, in

combination with the ability to apply rules only where you need to: granular control
down to the individual byte.

Passiveness
Another key design decision was to make ModSecurity as passive as possible; it will
thus never make changes to transaction data unless instructed to do so. The key
reason for this was to give users confidence to deploy ModSecurity with entirely pas-
sive rulesets that allow them to just observe, safe in knowing that their applications
will not be affected. That's why ModSecurity will give you plenty of information, but
ultimately leave the decisions to you.

Predictability
There’s no such thing as a perfect tool, but a predictable one is the next best thing.
Armed with all the facts, you can understand ModSecurity’s weak points and work
around them.

There are elements in ModSecurity that fall outside the scope of these principles. For exam-
ple, ModSecurity can change the way Apache identifies itself to the outside world, confine
the Apache process within a jail, and even inject security tokens into the traffic. Although
these functions are useful, I think that they detract from the main purpose of ModSecurity,
which is to be a reliable and predictable tool that enables HTTP traffic inspection.

Deployment Options

ModSecurity supports two deployment options: embedded and reverse proxy deployment.
There is no one correct way to use them; choose an option based on what best suits your
circumstances. There are advantages and disadvantages of both options:

Embedded
Because ModSecurity is an Apache module, you can add it to any compatible version
of Apache. At the moment, that means a reasonably recent Apache version, ideally
from the 2.4.x branch. That said, a version from the 2.2.x branch will also work.
ModSecurity has been ported to Nginx and to IIS, which introduces wider platform
options. The embedded option is a great choice for those who already have their

Guiding Principles 7

architecture laid out and don’t want to change it. Embedded deployment is also the
preferred option if you need to protect hundreds of web servers. In such situations, it
is impractical to build a separate proxy-based security layer. Embedded ModSecurity
not only does not introduce new points of failure, but it scales seamlessly as the
underlying web infrastructure scales. The main challenge of embedded deployment is
that server resources are shared between the web server and ModSecurity.

Reverse proxy

Reverse proxies are effectively HT'TP routers, designed to stand between web servers
and their clients. When you install a dedicated Apache reverse proxy and add ModSe-
curity to it, you get a “proper” network web application firewall, which you can use to
protect any number of web servers on the same network. Many security practitioners
prefer having a separate security layer, with which you get complete isolation from
the systems you are protecting. On the performance front, a standalone ModSecurity
installation will have resources dedicated to it, which means that you will be able
to do more (i.e., have more complex rules). The main disadvantage of this approach
is the new point of failure, which will need to be addressed with a high-availability
setup of two or more reverse proxies.

Getting Started

In this first practical section of the book, I will give you a whirlwind tour of ModSecurity’s
internals to help you get started.

Hybrid Nature of ModSecurity

ModSecurity is a hybrid WAF engine that relies on the host web server for some of its
work. ModSecurity was originally written for the Apache web server but has since been
ported to Nginx and to IIS. Although both ports are actively maintained, they suffer from
ModSecurity’s heritage and tight integration with the Apache source code. The next major
version of ModSecurity is being reimplemented to separate it from Apache, allowing it
to support all web servers equally well. Until that happens, the best web server to run
ModSecurity is Apache 2.x.

Apache does for ModSecurity what it does for all other modules—it handles the following
infrastructure tasks:

1. Decrypts SSL

2. Breaks up the inbound connection stream into HTTP requests
3. Partially parses HTTP requests
4

. Invokes ModSecurity, choosing the correct configuration context

8 Chapter 1: Introduction

5. Dechunks request bodies as necessary
There are a few additional tasks Apache performs in a reverse proxy scenario:
1. Forwards requests to backend servers (with or without SSL)
2. Partially parses HTTP responses
3. Dechunks response bodies as necessary

The advantage of a hybrid implementation is that it’s efficient; the duplication of work is
minimal when it comes to HTTP parsing. A couple of disadvantages of this approach are
that you don't always get access to the raw data stream and that web servers sometimes don’t
process data in the way a security-conscious tool would. In the case of Apache, the hybrid
approach works reasonably well, with a few minor issues:

Request line and headers are NUL-terminated
This normally isn't a problem, because what Apache doesn’t see can't harm any
module or application. In some rare cases, however, the purpose of NUL-byte evasion
is to hide something, and this Apache behavior only helps with the hiding.

Request header transformation
Apache will canonicalize request headers, combining multiple headers that use the
same name and collapsing those that span two or more lines. The transformation
may make it difficult to detect subtle signs of evasion, but in practice this hasn’t been
a problem yet.

Quick request handling
Apache will handle some requests quickly, leaving ModSecurity unable to do any-
thing but notice them in the logging phase. Invalid HTTP requests, in particular, will
be rejected by Apache without ModSecurity having a say.

No access to some response headers
Because of the way Apache works, the Server and Date response headers are invisible
to ModSecurity in embedded mode; they can't be inspected or logged.

Main Areas of Functionality
The functionality offered by ModSecurity falls roughly into four areas:

Parsing
ModSecurity tries to make sense of as much data as available. The supported data
formats are backed by security-conscious parsers that extract bits of data and store
them for use in the rules.

Buffering
In a typical installation, both request and response bodies will be buffered. This
means ModSecurity usually sees complete requests before they’re passed to the appli-

Main Areas of Functionality 9

cation for processing, and complete responses before theyre sent to clients. Buffering
is an important feature, because its the only way to provide reliable blocking. The
downside of buffering is that it requires additional RAM to store the request and
response body data.
Logging

Full transaction logging (also referred to as audit logging) is a big part of what
ModSecurity does. This feature allows you to record complete HTTP traffic instead
of just rudimentary access log information. Request headers, request body, response
header, response body—all those bits will be available to you. It is only with the
ability to see what’s happening that you will be able to stay in control.

Rule engine
The rule engine builds on the work performed by all other components. By the time
the rule engine starts operating, the various bits and pieces of data it requires will all
be prepared and ready for inspection. At that point, the rules will take over to assess
the transaction and take actions as necessary.

Note

There’s one thing ModSecurity purposefully avoids doing: as a matter of design,
ModSecurity does not support data sanitization. I don’t believe in sanitization,
purely because I believe that it is too difficult to get right. If you know for sure that
youre being attacked (as you have to before you can decide to sanitize), then you
should refuse to process the offending requests altogether. Attempting to sanitize
merely opens a new battlefield in which your attackers don’t have anything to lose
but have everything to win. You, on the other hand, don’t have anything to win but
everything to lose.

What Rules Look Like

Every part of ModSecurity revolves around two things: configuration and rules. The config-
uration tells ModSecurity how to process the data it sees; the rules decide what to do with
the processed data. Although it’s too early to go into how the rules work, I'll include a quick
example here just to give you an idea of what they look like. For example:

SecRule ARGS "@rx <script>" \
"id:2000,1log,deny,status:404"

Even without further assistance, you can probably recognize the part in the rule that
specifies what we want to look for in input data (<script>). Similarly, you'll easily figure
out what will happen if we do find the desired pattern (log,deny,status:404). Things will
become more clear when you look at the general rule syntax, as follows:

SecRule VARIABLES OPERATOR ACTIONS

10 Chapter 1: Introduction

The three parts have the following meanings:

1. The VARIABLES part tells ModSecurity where to look. The ARGS variable, used in the
example, indicates all request parameters.

2. The OPERATOR part tells ModSecurity how to look. In the example, we have a regular
expression pattern, which will be matched against ARGS.

3. The ACTIONS part is used to add metadata to the rules and to specify what ModSecuri-
ty should do when a match occurs. The rule from the previous example assigns ID
2000 to uniquely identify the rule and specifies the following actions on a match: log
problem, stop transaction processing, and return HTTP response code 404.

I hope you aren’t disappointed with the simplicity of this first rule. I promise you that by
combining the various facilities offered by ModSecurity, you will be able to write useful
rules that implement complex logic where necessary.

Transaction Lifecycle

In ModSecurity, every transaction goes through five steps, or phases. In each of the phases,
ModSecurity will perform some work at the beginning (e.g., parse data that has become
available), invoke the rules specified to work in that phase, and perhaps perform a task or
two after the phase rules have finished. At first glance, it may seem that five phases are
too many, but there’s a reason that each phase exists. There is always one task, sometimes
several, that can only be performed at a particular moment in the transaction lifecycle.

Request headers (1)

The request headers phase is the first entry point for ModSecurity. The principal
purpose of this phase is to allow rule writers to assess a request before the costly
request body processing is undertaken. Similarly, there is often a need to influence
how ModSecurity will process a request body, and in this phase is the time to do it.
For example, ModSecurity will not parse an XML or JSON request body by default,
but you can instruct it do so by placing the appropriate rules into phase 1. (If you care
about XML processing, it’s described in detail in Chapter 13, Handling XML.)

Request body (2)
The request body phase is the main request analysis phase and takes place immedi-
ately after a complete request body has been received and processed. The rules in
this phase have all the available request data at their disposal. Afterward, the web
server will either generate the response itself (in embedded mode) or forward the
transaction to a backend web server (in reverse proxy mode).

Response headers (3)
The response headers phase takes place after response headers become available but
before a response body is read. The rules that need to decide whether to inspect a
response body should run in this phase.

Transaction Lifecycle 11

Response body (4)
The response body phase is the main response analysis phase. By the time this phase
begins, the response body will have been read and all its data made available for the
rules to make their decisions.

Logging (5)
The logging phase is special. It’s the only phase from which you cannot block. By the
time this phase runs, the transaction will have finished, so theres little you can do but
record the fact that it happened. Rules in this phase are run to control how logging is
performed or to save information in persistent storage.

Lifecycle Example

To give you a better idea of what happens in every transaction, we’ll examine a detailed
debug log of one POST transaction. The debug log is an additional logging facility provided
by ModSecurity that allows you to observe the execution steps of the module in great detail.
I've deliberately chosen a transaction type that uses the request body as its principal method
to transmit data, because such a transaction will exercise most parts of ModSecurity. To
keep things relatively simple, I used a configuration without any rules, removed some of the
debug log lines for clarity, and removed the timestamps and some additional metadata from
each log line.

Note

Please don't try to understand everything about the logs at this point. The idea
is to get a general feel for how ModSecurity works and an introduction to debug
logs. Soon after you start to use ModSecurity, you'll discover that debug logs are an
indispensable rule-writing and troubleshooting tool.

The transaction I'm using as an example in this section is very straightforward. I made a
point of placing request data in two different places—parameter a in the query string and
parameter b in the request body—but theres little else of interest in the request:

POST /?a=test HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 6

b=test
The response is entirely unremarkable:

HTTP/1.1 200 OK

Date: Fri, 22 Jul 2016 04:59:13 GMT
Server: Apache

Content-Length: 12

12 Chapter 1: Introduction

Connection: close
Content-Type: text/html

Hello World!

ModSecurity is first invoked by Apache after request headers become available but before
a request body (if any) is read. First comes the initialization message, which contains the
unique transaction ID generated by mod_unique_id. With this, you should be able to pair
the information in the debug log with the information in your access and audit logs. At this
point, ModSecurity will parse the information in the request line and in the request headers.
In this example, the query string part contains a single parameter (a), so you'll see a message
documenting its discovery. ModSecurity will then create a transaction context and invoke
the REQUEST_HEADERS phase:

[4] Initialising transaction (txid V5LjWH8AAQEAAFPTIT64AAAAA).

[5] Adding request argument (QUERY_STRING): name "a", value "test"
[4] Transaction context created (dcfg 1154668).

[4] Starting phase REQUEST HEADERS.

Assuming that a rule didn't block the transaction, ModSecurity will now return control to
Apache, allowing other modules to process the request before control is given back to it.

In the second phase, ModSecurity will first read and process the request body;, if it’s present.
In the following example, you can see three messages from the input filter, which tell you
what was read. The fourth message tells you that one parameter was extracted from the
request body. The content type used in this request (application/x-www-form-urlencoded)
is one of the types ModSecurity recognizes and parses automatically. Once the request body
is processed, the REQUEST_BODY rules are processed.

[4] Second phase starting (dcfg 1154668).

[4] Input filter: Reading request body.

[9] Input filter: Bucket type HEAP contains 6 bytes.

[9] Input filter: Bucket type EOS contains 0 bytes.

[5] Adding request argument (BODY): name "b", value "test"

[4] Input filter: Completed receiving request body (length 6).
[4] Starting phase REQUEST BODY.

The filters mentioned in the logs are parts of ModSecurity that handle request and response
bodies:

[4] Hook insert filter: Adding input forwarding filter (r 7f5fc8002970).
[4] Hook insert filter: Adding output filter (r 7f5fc8002970).

There will be a message in the debug log every time ModSecurity sends a chunk of data

to the request handler, and one final message to say that there isn't any more data in the
buffers:

Transaction Lifecycle 13

[4] Input filter: Forwarding input: mode=0, block=0, nbytes=8192 (f 7f5fc800ae90, <
r 7f5fc8002970).

[4] Input filter: Forwarded 6 bytes.

[4] Input filter: Sent EOS.

[4] Input filter: Input forwarding complete.

The request is now in the hands of Apache’s request handler. If the web server is running
in embedded mode, the request handler will generate the response itself. If it'’s running in
reverse proxy mode, the server will forward the transaction to a backend server.

Shortly thereafter, the output filter will start receiving data, at which point the
RESPONSE_HEADERS rules will be invoked:

[9] Output filter: Receiving output (f 7f5fc800aeb8, r 7f5fc8002970).
[4] Starting phase RESPONSE_HEADERS.

Once all the rules have run, ModSecurity will continue to store the response body in its
buffers, after which it will run the RESPONSE_BODY rules:

[9] Content Injection: Not enabled.

[9] Output filter: Bucket type MMAP contains 13 bytes.

[9] Output filter: Bucket type EOS contains 0 bytes.

[4] Output filter: Completed receiving response body (buffered full - 12 bytes).
[4] Starting phase RESPONSE_BODY.

Again, assuming that none of the rules blocked, the accumulated response body will be
forwarded to the client:

[4] Output filter: Output forwarding complete.

Finally, the logging phase will commence. The LOGGING rules will be run first to allow
them to influence logging, after which the audit logging subsystem will be invoked to log
the transaction if necessary. A message from the audit logging subsystem will be the last
transaction message in the logs. In this example, ModSecurity tells us that it didn’t find
anything of interest in the transaction and that it sees no reason to log it:

[4] Initialising logging.

[4] Starting phase LOGGING.

[4] Recording persistent data took 0 microseconds.
[4] Audit log: Ignoring a non-relevant request.

File Upload Example

Requests that contain files are processed slightly differently. The changes can be best under-
stood by again following the activity in the debug log:

[4] Input filter: Reading request body.
[9] Multipart: Boundary: ------------------------ ce3de83f6cf79943

14 Chapter 1: Introduction

[9] Input filter: Bucket type HEAP contains 140 bytes.

[9] Multipart: Added part header "Content-Disposition" "form-data; name=\"f\"; <
filename=\"eicar.com.txt\""

[9] Multipart: Added part header "Content-Type" "text/plain"

[9] Multipart: Content-Disposition name: f

[9] Multipart: Content-Disposition filename: eicar.com.txt

[9] Input filter: Bucket type HEAP contains 116 bytes.

[4] Multipart: Created temporary file 1 (mode 0600): /usr/local/modsecurity/vare
/tmp/20160723-054018-V5LnIn8AAQEAAFUrQfQAAAAA-file-F7zALU

[9] Multipart: Added file part 7f67b400fd50 to the list: name "f" file name <
"eicar.com.txt" (offset 140, length 68)

[9] Input filter: Bucket type EOS contains 0 bytes.

[4] Request body no files length: 96

[4] Input filter: Completed receiving request body (length 256).

In addition to seeing the multipart parser in action, you’ll see ModSecurity creating a
temporary file (into which it will extract the upload) and adjusting its privileges to match
the desired configuration.

Then, at the end of the transaction, you'll see the cleanup and the temporary file deleted:

[4] Multipart: Cleanup started (remove files 1).
[4] Multipart: Deleted file (part) "/usr/local/modsecurity/var/tmpe
/20160723-054427-V5L0G38AAQEAAFASFAOAAAAT-file-bwi2wv"

The temporary file won't be deleted if ModSecurity decides to keep an uploaded file. Instead,
it will be moved to the storage area:

[4] Multipart: Cleanup started (remove files 0).

[4] Input filter: Moved file from "/usr/local/modsecurity/var/tmpe
/20160723-054018-V5LnIn8AAQEAAFUrQfQAAAAA-file-F7zAIU" to "/usr/local/modsecurity«
/var/upload/20160723-054018-V5LnIn8AAQEAAFUTQfQAAAAA-file-F7zAIU".

In the example traces, you've observed an upload of a small file that was stored in RAM.
When large uploads take place, ModSecurity will attempt to use RAM at first, switching to
on-disk storage once it becomes obvious that the file is larger:

[9] Input filter: Bucket type HEAP contains 6080 bytes.
[9] Input filter: Bucket type HEAP contains 2112 bytes.
[9] Input filter: Bucket type HEAP contains 5888 bytes.
[9] Input filter: Bucket type HEAP contains 2304 bytes.
[9] Input filter: Bucket type HEAP contains 5696 bytes.
[9] Input filter: Bucket type HEAP contains 2496 bytes.
[9] Input filter: Bucket type HEAP contains 5504 bytes.
[9] Input filter: Bucket type HEAP contains 2688 bytes.
[9] Input filter: Bucket type HEAP contains 5312 bytes.
[9] Input filter: Bucket type HEAP contains 2880 bytes.
[9] Input filter: Bucket type HEAP contains 5120 bytes.

Transaction Lifecycle 15

[9] Input filter: Bucket type HEAP contains 3072 bytes.
[4] Input filter: Request too large to store in memory, switching to disk.

A new file will be created to store the entire raw request body:

[4] Input filter: Created temporary file to store request body: /usr/locale
/modsecurity/var/tmp/20160723-054813-V5L0-X8AAQEAAFASFASAAAAQ-Tequest body-pIs7uv
[4] Input filter: Wrote 128146 bytes from memory to disk.

This file is always deleted in the cleanup phase:

[4] Multipart: Deleted file (part) "/usr/local/modsecurity/var/tmpe
/20160723-054813-V5L0-X8AAQEAAF4SFASAAAAQ-file-BghyEd"

[4] Input filter: Removed temporary file: /usr/local/modsecurity/var/tmpe
/20160723-054813-V5L0-X8AAQEAAF4SFASAAAAQ-Tequest body-pls7UV

Impact on Web Server

The addition of ModSecurity will change how your web server operates. As with all Apache
modules, you pay for the additional flexibility and security ModSecurity gives you with
increased CPU and RAM consumption on your server. The exact amount will depend on
your configuration of ModSecurity—namely, the rules—and the usage of your server. The
following is a detailed list of the various activities that increase resource consumption:

o ModSecurity will add to the parsing already performed by Apache, which results in a
slight increase in CPU consumption.

o Complex parsers (e.g., XML) are more expensive.

« The handling of file uploads may require I/O operations. In some cases, inbound data
will be duplicated on disk.

o The parsing will add to RAM consumption, because every extracted element (e.g., a
request parameter) will need to be copied into its own space.

» Request bodies and response bodies are usually buffered in order to support reliable
blocking.

« Every rule in your configuration will use some CPU time (for the operator) and RAM
(to transform input data before it can be analyzed).

» Some operators used in the rules (e.g., the regular expression operator) are CPU-inten-
sive. Running regular expressions on very large request or response bodies can take a
long time—seconds, even.

o Full transaction logging is an expensive I/O operation.

In practice, this list is important because it keeps you informed; what matters is that you
have enough resources to support your ModSecurity needs. If you do, then it doesn’t matter

16 Chapter 1: Introduction

how expensive ModSecurity is. Also, whats expensive to one person may not be to someone
else. If you don't have enough resources to do everything you want with ModSecurity, you’ll
need to monitor the operation of your system and remove some functionality to reduce the
resource consumption; virtually everything that ModSecurity does is configurable, so you
should have no problems doing so.

It's generally easier to run ModSecurity in reverse proxy mode, because then you usually
have an entire server (with its own CPU and RAM) to play with. In embedded mode,
ModSecurity will add to the processing already performed by the web server, so this method
is more challenging on a busy server.

For what it’s worth, ModSecurity generally uses the minimal necessary resources to perform
the desired functions, so this is really a case of exchanging functionality for speed; if you
want to do more, you have to pay more.

What'’s Next?

The purpose of this section is to map your future ModSecurity activities and help you
determine where to go from here. Where you’ll go depends on what you want to achieve
and how much time you have to spend. A complete ModSecurity experience, so to speak,
consists of the following elements:

Installation and configuration
This is the basic step that all users must learn how to perform. The next three chap-
ters will teach you how to make ModSecurity operational, performing installation,
general configuration, and logging configuration. Once you're done with those tasks,
you need to decide what you want to do with ModSecurity—and that’s what the
remainder of the book is for.

Rule writing

Rule writing is an essential skill. You may currently view rules as a tool to detect
application security attacks. They are that, but they are also much more. In ModSecu-
rity, you write rules to find out more about HTTP clients (e.g., geolocation and IP
address reputation), perform long-term activity tracking (of IP addresses, sessions,
and users, for example), implement policy decisions (use available information to
make decisions to warn or block), write virtual patches, and even to check on the
status of ModSecurity itself.

It’s true that the attack detection rules are in a class of their own, but that’s mostly
because in order to write them successfully, you need to know a great deal about
application security. For that reason, many ModSecurity users generally focus on
using third-party rulesets for attack detection. It’s a legitimate choice. Not everyone
has the time and inclination to become an application security expert. Even if you

What's Next? 17

end up not using any inspection rules whatsoever, the ability to write virtual patches
is reason enough to use ModSecurity.

Rulesets
The use of existing rulesets is the easiest way to get to the proverbial low-hanging
fruit: invest small effort and reap big benefits. Traditionally, the main source of
ModSecurity rules has been the CRS project, now hosted with OWASP. On the other
hand, if you are keen to get your hands dirty, I can tell you that I draw great pleasure
from writing my own rules. It's a great way to learn about application security. The
only drawback is that it requires a large time investment.

Remote logging and alert management GUI

ModSecurity is perfectly usable without a remote logging solution and without a GUI
(the two usually go together). Significant error messages are copied to Apache’s error
log. Complete transactions are usually logged to the audit log. With a notification
system in place, you'll know when something happens and can visit the audit logs to
investigate. For example, many installations will divert Apache’s error log to a central
logging system (via syslog).

The process does become more difficult with more than one sensor to manage. Fur-
thermore, GUIs make the whole experience of monitoring much more pleasant. For
that reason you'll probably aim to install one of the available remote centralization
tools and use its GUI. The available options are listed in the following Resources
section.

Resources

This section contains a list of assorted ModSecurity resources that can assist you in your
work.

General Resources

The following resources are the bare essentials:

ModSecurity web site
ModSecurity’s web site is probably going to be your main source of information.! You
should visit the web site from time to time, as well as subscribe to receive the updates
from the blog.

1 ModSecurity web site (SpiderLabs, retrieved 29 December 2016)

18 Chapter 1: Introduction

https://www.modsecurity.org

Official documentation
The official ModSecurity documentation is maintained in a wiki, but copies of it are
made for inclusion with every release.?

Issue tracker

You’'ll want to visit the ModSecurity issue tracker® for one of two reasons: to report a
problem with ModSecurity itself (e.g., when you find a bug) or to check the progress
on the next (major or minor) version. Before reporting any problems, go through
the support checklist,* which will help you assemble the information required to
help resolve your problem. Providing as much information as possible will help the
developers understand and replicate the problem and provide a fix (or a workaround)
quickly.

Users’ mailing list
The users’ mailing list (mod-security-users@lists.sourceforge.net) is a general-purpose
mailing list through which you can discuss ModSecurity.> Feel free to ask questions,
propose improvements, and discuss ideas. You'll hear about new ModSecurity ver-
sions first through this list.

Core Rule Set mailing list
The CRS project® is part of OWASP” and has a separate mailing list (owasp-modsecu-
rity-core-rule-set@lists.owasp.org). Discussions about false positives and the develop-
ment of new rules also take place in the Core Rules GitHub repository.®

Developer Resources

If you're interested in development work, you’ll need to access the following resources:

Developers’ mailing list
The developers’ mailing list is a resource for discussing ModSecurity software devel-
opment.® If you do decide to start playing with the source code, use this list to
seek advice and to discuss your work. There is also a ModSecurity developers’ guide
available with guidelines and examples.!?

2 ModSecurity documentation (SpiderLabs, retrieved 29 December 2016)

3 ModSecurity issue tracker (GitHub, retrieved 29 December 2016)

4 ModSecurity Support Checklist (SpiderLabs, retrieved 29 December 2016)

5 ModSecurity Users’ mailing list (SourceForge, retrieved 29 December 2016)

6 Core Rules Project (OWASP, retrieved 29 December 2016)

7 OWASP (OWASP, retrieved 29 December 2016)

8 CRS GitHub repository (GitHub, retrieved 29 December 2016)

9 ModSecurity developers’ mailing list (SourceForge, retrieved 29 December 2016)
10 ModSecurity developers’ guide (SpiderLabs, retrieved 29 December 2016)

Developer Resources

19

https://www.modsecurity.org/documentation.html
https://github.com/SpiderLabs/ModSecurity/issues
https://www.modsecurity.org/support-request-checklist.html
https://lists.sourceforge.net/lists/listinfo/mod-security-users
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org
https://github.com/SpiderLabs/owasp-modsecurity-crs
https://lists.sourceforge.net/lists/listinfo/mod-security-developers
http://www.modsecurity.org/developers.html

Source code access
The source code of ModSecurity is hosted in a GitHub repository, which allows you
to access it directly or through a web-based UL!!

AuditConsole

Using ModSecurity entirely from the command line is a lot of fun, but reviewing audit and
debug logs is difficult without special scripts or higher-level tools. Your best choice for a log
centralization and GUI tool is AuditConsole, built by Christian Bockermann.12

AuditConsole is free and provides the following features:
« Event centralization from multiple remote ModSecurity installations
« Event storage and retrieval
o Support for multiple user accounts and support for different views
» Event tagging

« Event triggers, which are executed in the console

Summary

This chapter provided a ModSecurity orientation. I introduced ModSecurity at a high level,
discussed what it is and what it isn't, and what it can and can’t do. I also gave you a taste
of what ModSecurity is like and described its common usage scenarios, as well as covered
some of the interesting parts of its operation.

The foundation you now have should be enough to help you set off on a journey of
ModSecurity exploration. The next chapter discusses installation.

11 ModSecurity source code (GitHub, retrieved 29 December 2016)
12 puditConsole (Christian Bockermann, retrieved 15 January 2017)

20 Chapter 1: Introduction

https://github.com/SpiderLabs/ModSecurity
https://www.jwall.org/web/audit/console/

2 Installation

Before you can install ModSecurity, you need to decide if you want to compile it from
source or use a binary version—either one included with your operating system or one
produced by a third party. Each option comes with advantages and disadvantages, as listed

in Table 2.1.

Table 2.1. Installation options

Installation type Advantages Disadvantages

Operating system version e Fully automated installation .
e Maintenance included

Third-party binary Semiautomated installation .

Source code e (Can always use the latest version .
e (Can use experimental versions

Can make changes, apply patches,
and make emergency security fixes

May not be the latest version

May not be the latest version
Manual download and updates

Must determine if you trust the third
party

Manual installation and maintenance
required

A lot of work involved with rolling your
own version

In some cases, you won't have a choice. For example, if you've installed Apache from source,
you will need to install ModSecurity from source too (you will be able to reuse the system
packages, of course). The following questions may help you to make the decision:

« Do you intend to use ModSecurity seriously?

« Are you comfortable compiling programs from source?

Do you have enough time to spend on the compilation and successive maintenance of

a custom-installed program?

+ Will you need to make changes to ModSecurity or write your own extensions?

21

Casual users should generally try to use binary packages when they’re available (and they
are available in most distributions).

Installation from Source

When we build dedicated reverse proxy installations, we tend to build everything from
source, because that allows us access to the latest Apache and ModSecurity versions and
makes it easier to tweak elements (by changing the source code of either Apache or ModSe-
curity) when we want to.

Downloading Releases

To download ModSecurity, go to its web site! or the GitHub project page.> You will need
both the main distribution of the source code and its cryptographic signature:

$ wget https://www.modsecurity.org/tarball/2.9.1/modsecurity-2.9.1.tar.gz
$ wget https://www.modsecurity.org/tarball/2.9.1/modsecurity-2.9.1.tar.gz.asc

Verify the signature before doing anything else, to ensure the package you've just download-
ed doesn’t contain a Trojan horse planted by a third party and that it hasn’t been corrupted
during transport:

$ gpg --verify modsecurity-2.9.1.tar.gz.asc
gpg: Signature made Wed 09 Mar 2016 19:48:15 CET using DSA key ID E8B11277
gpg: Can't check signature: public key not found

Your first attempt may not provide the expected results, but that can be solved easily by
importing the referenced key from a key server:

$ gpg --keyserver pgp.mit.edu --recv-keys E8B11277

gpg: requesting key E8B11277 from hkp server pgp.mit.edu

gpg: key E8B11277: public key "Felipe Zimmerle da Nobrega Costa ¢
<felipe@zimmerle.org>" imported

gpg: 3 marginal(s) needed, 1 complete(s) needed, classic trust model
gpg: depth: 0 wvalid: 3 signed: 5 trust: 0-, og, on, om, Of, 3u
gpg: depth: 1 valid: 5 signed: 5 trust: 2-, 0oq, On, 2m, 1f, Ou
gpg: depth: 2 valid: 4 signed: 0 trust: 1-, oq, on, om, 3f, Ou
gpg: next trustdb check due at 2018-09-26

gpg: Total number processed: 1

gpg: imported: 1

Now you can try again:

1 ModSecurity web site (SpiderLabs, retrieved 29 December 2016)
2 ModSecurity GitHub page (GitHub, retrieved 29 December 2016)

22 Chapter 2: Installation

https://www.modsecurity.org
https://github.com/SpiderLabs/ModSecurity

$ gpg --verify modsecurity-2.9.1.tar.gz.asc

gpg: Signature made Wed 09 Mar 2016 19:48:15 CET using DSA key ID E8B11277
gpg: Good signature from "Felipe Zimmerle da Nobrega Costa <
<felipe@zimmerle.org>"

gpg: aka "Felipe Zimmerle"

gpg: aka "Felipe Costa <fcosta@trustwave.com>"

gpg: aka "Felipe Zimmerle (gmail) <zimmerle@gmail.com>"

gpg: aka "[jpeg image of size 7280]"

gpg: aka "[jpeg image of size 14514]"

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 190E FACC A1E9 FA46 6A8E CD9C E6DF BO8C E8B1 1277

The warning in the previous snippet might look serious, but it generally isn’t a problem; it
has to do with the way gpg expects you to verify the identity of an individual. The warning
basically tells you that you've downloaded Felipe’s key from somewhere, but that you don’t
really know that it belongs to him. The only way to be sure, as far as gpg is concerned, is to
meet Felipe in real life, or to meet someone else who knows him personally. If you want to
learn more, look up web of trust on Wikipedia.

Downloading from Repository

If you want to be on the cutting edge, downloading the latest development version directly
from the GitHub repository (the source code control system used by the ModSecurity
project) is the way to go. When you do so, you'll get new features days and even months
before they make it into an official, stable release. Having said that, however, there is a
reason we call some versions “stable” When you use a repository version of ModSecurity,
you need to accept that there is no guarantee whatsoever that it will work correctly.

Before you can install a development version of ModSecurity, you need to know where to
find it. The repository, which is hosted with GitHub, can be viewed with a browser.3

The default view on GitHub is the master source code tree, which shows the most recent
development version with the latest accepted changes. Proposed changes are accessible
via pull requests or via their own separate branch. These active branches may sometimes
contain a feature or a fix that has not been accepted into the master source code. If you
want to download a release candidate or a tested release, you can access these archives via a
separate submenu.

Once you've determined the location of the version of ModSecurity you want to use, you
can get it using the clone command of Git, like this:

$ git clone https://github.com/SpiderLabs/ModSecurity.git modsecurity-master

3 ModSecurity source code repository (GitHub, retrieved 29 Dec 2016)

Downloading from Repository 23

https://github.com/SpiderLabs/ModSecurity

What you’ll get in the modsecurity-master folder is almost the same as what you get when
you download a release. Some files need to be generated via a special command first,
though. Furthermore, the documentation might not be in sync. The master documentation
is kept in a wiki, with copies of the wiki included with releases.

Installation on Unix

Before you can start to compile ModSecurity, you must ensure that you have a complete
development toolchain installed. Refer to the documentation of the operating system you’re
using for instructions. If you'll be adding ModSecurity to an operating system-provided
Apache, you're likely to need to install a specific Apache development package too. For
example, on Debian and Ubuntu you need to use apache2-dev.

In the next step, ensure that you have resolved all the dependencies before compilation. The
dependencies are listed in Table 2.2.

Table 2.2. ModSecurity dependencies

Dependency In Apache? Purpose
Apache Portable Runtime (APR)2 Yes Various
APR-Utilb Yes Various
mod_unique_id Yes, but may not be installed Generate unique transaction ID
by default
libcurl® No Remote logging (mlogc)
libxm|2d No XML processing
Lua® No Writing complex rules in Lua (optional)
Perl Compatible Regular Expressions Yes, but cannot be used by Regular expression matching
(PCRE)f ModSecurity
ssdeep® No Perform fuzzy hash matching
YAILD No JSON processing and JSON format logging

2 Apache Portable Runtime (Apache Portable Runtime Project, retrieved 29 December 2016)
b APR-Util (Apache Portable Runtime Project, retrieved 29 December 2016)

¢ libeurl (libcurl, retrieved 29 December 2016)

dJibxml2 (xmlsoft.org, retrieved 29 December 2016)

€ Lua 5.2 (Lua.org, retrieved 29 December 2016)

fPerl Compatible Regular Expressions (PCRE, retrieved 29 December 2016)

& ssdeep (SourceForge, retrieved 29 December 2016)

N YAJL (GitHub, retrieved 29 December 2016)

If you already have Apache installed, you'll only ever need to deal with libcurl, libxml2, Lua,
ssdeep, and YAJL. With Apache compiled from source, you'll also need the PCRE library.
Apache no longer comes bundled with it. To work around this issue, install PCRE separately
and then tell Apache to use the external copy; I explain how to do so later in this section.

24 Chapter 2: Installation

https://apr.apache.org
https://apr.apache.org
https://curl.haxx.se/libcurl/
http://xmlsoft.org
https://www.lua.org
http://www.pcre.org
http://ssdeep.sourceforge.net/
https://lloyd.github.io/yajl/

If you're installing from source, go to the packages’ web sites and download and install the
tarballs. If youre using managed packages, you just need to determine what the missing
packages are called. On distributions from the Debian family, the following command
installs the missing packages:

apt-get install libcurl3-dev liblua5.3-dev libxml2-dev libfuzzy-dev libyajl-dev

Refer to the documentation of the package management system used by your platform to
determine how to search the package database.

Note

Libcurl, which is used for remote logging, can be compiled to use OpenSSL or
GnuTLS. You are advised to use OpenSSL because there have been complaints
about remote logging problems when GnuTLS was used. APR-Util is usually com-
piled without support for cryptographic operations. If you want to use the directive
SecRemoteRule with the parameter crypto, you'll need to compile APR-Util your-
self.

The process should be straightforward from here on. If you cloned the GitHub repository
and did not download a release, then you need to generate the configuration script, which is
used to prepare the compilation process:

$./autogen.sh

If you downloaded a release, then you can skip this step and execute the following com-
mands directly in succession:

$./configure
$ make

This set of commands assumes that you don’t need any compile-time options. If you do, see

the following subsection.

Note

Running additional tests after compilation (make test and make test-regression)
is always a good idea and is an especially good idea when using a development
version of ModSecurity. If youre going to have any problems, you want to have
them before installation, rather than after.

After ModSecurity is built, one more step is required to install it:
$ sudo make install

This command adds the module to your Apache installation but doesn’t activate it; you
must do that manually. (While youre doing so, confirm that mod_unique_id is enabled;

Installation on Unix 25

ModSecurity requires it.) The command will also create a folder (/usr/local/modsecurity
by default) and store the various runtime files in it. Here’s what you get:

bin/
mlogc
mlogc-batch-load.pl
rules-updater.pl
Lib/
mod_security2.so

Compile-Time Options

The configuration example from the previous section assumed that the dependencies were
all installed as system libraries. It also assumed that the configure script will figure every-
thing on its own. It may or may not do so, but chances are good that you’ll occasionally
need to do something different; this is where the compile-time options listed in Table 2.3
come in handy.

Table 2.3. Main compile-time options

Option Description

--disable-request-early Shift the first processing phase of ModSecurity to a later position in the lifecycle
of an Apache request. The default is to run the phase early.

--with-apr Specify the location of the Apache Portable Runtime library.

--with-apu Specify the location of the APR-Util library.

--with-apxs Specify the location of Apache through the location of the apxs script.

--with-curl Specify the location of libcurl.

--with-libxml Specify the location of libxml2.

--with-pcre Specify the location of PCRE.

--with-ssdeep Specify the location of ssdeep.

--with-yajl Specify the location of YAIL.

There are a few additional options dealing with the audit log format of ModSecurity. They
are rarely used in practice, but take a look at the configure script to get an overview.

Custom-Compiled Apache Installations

Using ModSecurity with a custom-compiled version of Apache is straightforward. With
Apache 2.2, there used to be issues with PCRE and the mod_unique_id module not being
enabled by default, but these were solved with Apache 2.4.

26 Chapter 2: Installation

To configure ModSecurity, use the --with-apxs compile-time option to specify the location
of your Apache installation. In the following example, I'm assuming Apache is installed
in /usr/local/apache:

$./configure \
--with-apxs=/usr/local/apache/bin/apxs

From here, install ModSecurity as described in the previous section.

After both Apache and ModSecurity are installed, you should confirm that both products
link to the same PCRE library, using 1dd:

$ 1dd /usr/local/apache/bin/httpd | grep pcre
libpcre.so.3 => /1ib64/1libpcre.so.3 (0x00007ff2a11fdo00)

You should get the same result when you compile ModSecurity:

$ 1dd /usr/local/apache/modules/mod security2.so | grep pcre
libpcre.so.3 => /lib64/libpcre.so.3 (0x00007f85995c5000)

Tip

Mac OS X does not have 1dd, but you can obtain the equivalent functionali-
ty by running otool with option -L. If you really get stuck, consider using
install name_tool to change library dependencies after ModSecurity is compiled.

It is quite possible to have a configuration in which Apache uses its bundled PCRE and
ModSecurity uses another PCRE version available on the system.

ModSecurity reports the detected library version numbers at startup (in the error log) and
compares them to those used at compile time. One or more warnings will be issued if
a mismatch is found. This feature is especially handy for troubleshooting various library
collisions, which can happen in odd situations.

ModSecurity for Apache/2.9.1 (http://www.modsecurity.org/) configured.
ModSecurity: APR compiled version="1.5.2"; loaded version="1.5.2"
ModSecurity: PCRE compiled version="8.39 "; loaded version="8.39 2016-06-14"
ModSecurity: LUA compiled version="Lua 5.2"

ModSecurity: YAJL compiled version="2.0.4"

ModSecurity: LIBXML compiled version="2.9.1"

Installation from Binaries

As previously discussed, using a binary version of ModSecurity is often the easiest option,
because it just works. Unfortunately, what you gain in ease of installation you lose by
sometimes being limited to an older version. Further, packagers often do not include mlogc,

Installation from Binaries 21

which is helpful for remote log centralization. In general, if youre okay with the way the
module was compiled, then you'll be fine with binary packages.

Fedora Core, Cent0S, and Red Hat Enterprise Linux

If youre a Fedora user, you can install ModSecurity directly from the official distribution,
using yum:

yum install mod_security

On CentOS and Red Hat Enterprise Linux, you have to use the packages from Extra Pack-
ages for Enterprise Linux (EPEL), a volunteer effort thats part of the Fedora community.
The installation process is the same as for Fedora.

Debian and Ubuntu

Debian was the first distribution to include ModSecurity. Alberto Gonzalez Iniesta has
been a long-time supporter of ModSecurity on Debian, supporting ModSecurity in his own
(unofficial) repository and later becoming the official packager.

If you are running a version of the Debian family, the installation is easy:
apt-get install libapache2-mod-security2

This single command will download the package and install it, then activate the module in
the Apache configuration.

Note

Don’t forget that Debian uses a special system of naming configuration files
to manage Apache modules and sites. To activate and deactivate modules, use
a2enmod and a2dismod, respectively. To manage Apache, use apache2ctl.

Installation on Windows

ModSecurity was ported to Windows early on, in 2003, and has run well on the platform
ever since. Windows binary packages of ModSecurity are maintained by Steffen Land,
who runs Apache Lounge, a community for those who run Apache on Windows.> In
addition to ModSecurity, Steffen maintains his version of Apache itself, as well as many
third-party modules you might want to run on Windows. The ModSecurity binary packages

4 Extra Packages for Enterprise Linux (Fedora Project, retrieved 29 December 2016)
5 Apache Lounge web site (Apache Lounge, retrieved 29 December 2016)

28 Chapter 2: Installation

https://fedoraproject.org/wiki/EPEL
https://www.apachelounge.com

are consistently up to date, so you’ll have little trouble if you want to run the latest version.
The download includes ModSecurity and mlogc.

Note

Although it might be possible to run Steffen’s ModSecurity binaries with a version
of Apache produced elsewhere, you really should use only the packages from a sin-
gle location that are intended to be used together. Otherwise, you may encounter
unusual behavior and web server crashes.

The installation is quite easy. First, download the package and copy the dynamic libraries
into the modules/ folder (of the Apache installation). Then, modify your Apache configura-
tion to activate ModSecurity:

LoadModule security2 module modules/mod security2.so

You will also need to activate mod_unique_id. This module may not be already active, but
there should already be a commented-out line in your configuration. You just need to find it
and uncomment it. If it isn’t there, just add the following:

LoadModule unique_id module modules/mod unique id.so

Summary

It’s never been easier to install ModSecurity, now that it’s included with so many operating
systems and distributions. Although installation from source code gives you guaranteed
access to the most recent version, as well as access to the yet-unreleased code, it can be
time-consuming if youre not used to it; it's not everyone’s cup of tea. There’s something to
be said for using the provided version and not having to think about upgrading (and saving
the time it takes to upgrade).

In the next chapter, I'll explain each of the configuration options, teaching you how to set
every single option, step by step, so that everything is just the way you like it.

Summary 29

3 Configuration

Now that you have ModSecurity installed and ready to run, we can proceed to the configu-
ration. This section, with its many subsections, goes through every part of ModSecurity
configuration, explicitly configuring every little detail:

 Going through most of the configuration directives will give you a better understand-
ing of how ModSecurity works. Even if there are features that you don’t need immedi-
ately, you will learn that they exist and you’ll be able to take advantage of them when
the need arises.

« By explicitly configuring every single feature, you will foolproof your configuration
against incompatible changes to default settings that may happen in future versions of
ModSecurity.

In accordance with its philosophy, ModSecurity won’t do anything implicitly. It won’t even
run unless you tell it to. There are three reasons for that:

1. By not doing anything implicitly, we ensure that ModSecurity does only what you tell
it to. That not only keeps you in control but also makes you think about every feature
before you add it to your configuration.

2. Itis impossible to design a default configuration that works in all circumstances. We
can give you a framework within which you can work (as 'm doing in this section),
but you still need to shape your configuration according to your needs.

3. Security is not free. You pay for it by the increased consumption of RAM, CPU, or the
possibility that you may block a legitimate request. Incorrect configuration may cause
problems, so we need you to think carefully about what you’re doing.

The remainder of this section explains the proposed default configuration for ModSecuri-
ty. You can get a good overview of the default configuration simply by examining the
configuration directives supported by ModSecurity, which are listed in Table 3.1 (with the
exception of the logging directives, which are listed in several tables in Chapter 4, Logging).

31

Table 3.1. Main configuration directives

Directive Description

SecDataDir Sets the folder for persistent storage

SecRequestBodyAccess Controls request body buffering

SecRequestBodyInMemoryLimit Sets the size of the per-request memory buffer

SecRequestBodyLimit Sets the maximum request body size ModSecurity will accept
SecRequestBodyLimitAction Controls what happens once the request body limit is reached
SecRequestBodyNoFilesLimit Sets the maximum request body size, excluding uploaded files
SecResponseBodyAccess Controls response body buffering

SecResponseBodyLimit Specifies the response body buffering limit
SecResponseBodyLimitAction Controls what happens once the response body limit is reached
SecResponseBodyMimeType Specifies a list of response body MIME types to inspect
SecResponseBodyMimeTypesClear Clears the list of response body MIME types

SecRuleEngine Controls the operation of the rule engine

SecTmpDir Sets the folder for temporary files

SecUploadDir Sets the folder in which intercepted files will be stored
SecUploadFilelimit Set the maximum number of file uploads processed in a multipart POST
SecUploadKeepFiles Controls whether the uploaded files will be kept after the transaction is processed

Folder Locations

Your first configuration task is to decide where on the filesystem to put the various bits and
pieces that every ModSecurity installation consists of. Installation layout is often a matter of
taste, so it’s difficult to give specific advice. Similarly, different choices may be appropriate
in different circumstances. For example, if youre adding ModSecurity to a web server
and you intend to use it only occasionally, you may not want to use an elaborate folder
structure, in which case you'll probably put the ModSecurity folder underneath Apachess.
When you're using ModSecurity as part of a dedicated reverse proxy installation, however, a
well-thought-out structure is something that will save you a lot of time in the long run.

I always prefer to use an elaborate folder layout, because I like things to be neat and tidy
and because the consistency helps me when I am managing multiple ModSecurity instal-
lations. I start by creating a dedicated folder for ModSecurity (/usr/local/modsecurity)
with multiple subfolders underneath. The subfolders that are written to at runtime are
all grouped (in /usr/local/modsecurity/var), which makes it easy to relocate them to a
different filesystem using a symbolic link. I end up with the following structure:

Binaries
/usr/local/modsecurity/bin

32 Chapter 3: Configuration

Configuration files/rules
/usr/local/modsecurity/etc

Audit logs
/usr/local/modsecurity/var/audit
Persistent data
/usr/local/modsecurity/var/data
Logs
/usr/local/modsecurity/var/log
Temporary files
/usr/local/modsecurity/var/tmp

File uploads
/usr/local/modsecurity/var/upload

Getting the permissions right may involve slightly more effort, depending on your circum-
stances. Most Apache installations bind to privileged ports (e.g., 80 and 443), which means
that the web server must be started as root, and that also means root must be the principal
owner of the installation. Because it’s not good practice to stay as root at runtime, Apache
will switch to a low-privilege account (we’ll assume it’s apache) as soon as it initializes. You'll

find the proposed permissions in Table 3.2.

Table 3.2. Folder permissions

Location Owner Group Permissions
/usr/local/modsecurity root apache TWXT-X---
/usr/local/modsecurity/bin root apache TWXY-X---
/usxr/local/modsecurity/etc root root TWX-----~-
/usr/local/modsecurity/var root apache TWXY-X---
/usr/local/modsecurity/var/audit apache root TWX------
/usr/local/modsecurity/var/data apache root TWX------
/usr/local/modsecurity/var/log root root TWX------
/usr/local/modsecurity/var/tmp apache apache TWXY-X---
/usr/local/modsecurity/var/upload apache root IWX------

I've arrived at the desired permission layout through the following requirements:

1. Asalready discussed, root that owns everything by default, and we assign ownership

to apache only when necessary.

2. In two cases (/usr/local/modsecurity and /usr/local/modsecurity/var), we need to
allow apache to access a folder so that it can get to a subfolder; we do this by creating
a group, also called apache, of which user apache is the only member. We use the

Folder Locations

33

same group for the /usr/local/modsecurity/bin folder, where you might store some
binaries Apache will need to execute at runtime.

3. One folder, /usr/local/modsecurity/var/log, stands out; it’s the only folder under-
neath /usr/local/modsecurity/var to which apache is not allowed to write. That
folder contains log files that are opened by Apache early on while it’s still running as
root. On any Unix system, you must have only one account with write access to that
folder, and it has to be the principal owner. In our case, that must be root. Anything
else would create a security hole, whereby the apache user would be able to obtain
partial root privileges using symlink trickery. (Essentially, in place of a log file, the
apache user creates a symlink to some other root-owned file on the system. When
Apache starts, it runs as root and opens for writing the system file that the apache
user would otherwise be unable to touch. By submitting requests to Apache, one
might be able to control exactly what’s written to the log files. That can lead to system
compromise.)

4. A careful observer will notice that I've allowed group folder access to /usr/local/
modsecurity/var/tmp (which means that any member of the apache group is allowed
to read the files in the folder) even though this folder is owned by apache, which
already has full access. This is because you’ll sometimes want to allow ModSecurity
to exchange information with a third user account—for example, if you want to scan
uploaded files for viruses (usually via ClamAV). To allow the third user account to
access the files created by ModSecurity, make it a member of the apache group and
relax the file permissions using the SecUploadFileMode directive.

Note

As an exception to the proposed layout, you may want to reuse Apache’s log
directory for ModSecurity logs. If you don't, you'll have the error log separate from
the debug log (and the audit log if you choose to use the serial logging format). In
a reverse proxy installation in particular, it makes great sense to keep everything
integrated and easier to find. There may be other good reasons for breaking con-
vention. For example, if you have more than one hard disk installed and you use
the audit logging feature a lot, you may want to split the I/O operations across the
disks.

Configuration Layout

If you have anything but a trivial setup, spreading configuration across several files is
necessary in order to make maintenance easier. The layout depends on what you want to do
with ModSecurity. If you plan to run the OWASP ModSecurity Core Rule Set, for example,
you'll follow their setup proposal to a certain extent. Other rule layout conventions have

34 Chapter 3: Configuration

more to do with taste than anything else, but in this section I'll describe an approach that’s
good enough to start with.

Whatever configuration design I use, there is usually one main entry point, typically named
modsecurity.conf, which I use as a bridge between Apache and ModSecurity. In my bridge
file, I refer to any other ModSecurity files I might have, such as those listed in Table 3.3.

Table 3.3. Configuration files

Filename Description

main.conf Main configuration file
rules-first.conf Rules that need to run first
rules.conf Principal rule file
rules-last.conf Rules that need to run last

Your main configuration file (modsecurity.conf) thus may contain only the following lines:

Include /usr/local/modsecurity/etc/main.conf
Include /usr/local/modsecurity/etc/rules-first.conf
Include /usr/local/modsecurity/etc/rules.conf
Include /usr/local/modsecurity/etc/rules-last.conf

Adding ModSecurity to Apache

As the first step, make Apache aware of ModSecurity, adding the needed components.
Depending on how you've chosen to run ModSecurity, this may translate to adding one or
more lines to your configuration file. This is what the lines may look like:

Load Lua

LoadFile /usr/lib/x86_64-linux-gnu/libluas.3.so

Finally, load ModSecurity

LoadModule security2 module modules/mod security2.so

Now you just need to tell Apache where to find the configuration:

<IfModule mod_security2.c>
Include /usr/local/modsecurity/etc/modsecurity.conf
</IfModule>

The <IfModule> tag is there to ensure that the ModSecurity configuration files are used only
if ModSecurity is active in the web server. This is common practice when configuring any
nonessential Apache modules; it allows you to deactivate a module simply by commenting
out the appropriate LoadModule line.

Adding ModSecurity to Apache 35

Note

Prior to Apache 2.4, it was necessary to load the libxml2.so file similar to
libluas5.2.s0. However, this is no longer the case, because the XML library is
now linked into the ModSecurity module directly.

Powering Up

ModSecurity has a master switch—the SecRuleEngine directive—that allows you to quickly
turn it on and off. This directive will always come first in every configuration. I generally
recommend that you start in detection-only mode, because that way you can be sure
nothing will be blocked:

Enable ModSecurity, attaching it to every transaction.
SecRuleEngine DetectionOnly

You'll normally want to keep this setting enabled, of course, but there will be cases in
which you won't be exactly sure whether ModSecurity is doing something it shouldn't be.
Whenever that happens, you'll want to set it to 0ff, just for a moment or two, until you
perform a request without it running.

The SecRuleEngine directive is context-sensitive (i.e., it works with Apache’s container tags
<VirtualHost>, <Location>, and so on), which means that you can control exactly where
ModSecurity runs. You can use this feature to enable ModSecurity only for some sites, parts
of a web site, or even for a single script only. I discuss this feature in detail later.

Request Body Handling

Requests consist of two parts: the headers part, which is always present, and the body, which
is optional and depends on the HTTP method employed. Use the SecRequestBodyAccess
directive to tell ModSecurity to look at request bodies:

Allow ModSecurity to access request bodies. If you don't,
ModSecurity won't be able to see any POST parameters,

and that's generally not what you want.
SecRequestBodyAccess On

Once this feature is enabled, ModSecurity not only will have access to the content trans-
mitted in request bodies but also will completely buffer them. The buffering is essential
for reliable attack prevention. With buffering in place, your rules have the opportunity to
inspect requests in their entirety; only after you choose not to block will the requests be
allowed through.

The downside of buffering is that, in most cases, it uses RAM for storage, which needs to
be taken into account when ModSecurity is running embedded in a web server. There are

36 Chapter 3: Configuration

three directives that control how buffering occurs. The first two, SecRequestBodyLimit and
SecRequestBodyNoFilesLimit, establish request limits:

Maximum request body size we will accept for buffering.
If you support file uploads, then the value given on the
first line has to be as large as the largest file you

want to accept. The second value refers to the size of
data, with files excluded. You want to keep that value
as low as practical.

SecRequestBodyLimit 1310720

SecRequestBodyNoFilesLimit 131072

File uploads generally don’'t use RAM (and thus don’t create an opportunity for a memory-
based denial of service attack), which means that it’s safe to allow large requests as defined
by SecRequestBodyLimit. With all the other requests, the RAM usage has to be considered,
and a lower limit is imperative. SecRequestBodyNoFilesLimit is applied in such cases.

Warning

When the SecStreamInBodyInspection directive is enabled, it will attempt to store
the entire raw request body in STREAM_INPUT_BODY. In this case, you lose the protec-
tion of SecRequestBodyNoFilesLimit; the maximum amount of memory consumed
for buffering will be that defined with SecRequestBodyLimit.

Note

In blocking mode, ModSecurity will respond with a 413 (Request Entity Too Large)
response status code when a request body limit is reached. This response code was
chosen to mimic what Apache does in similar circumstances. See the section called
“SecRequestBodyLimitAction” in Chapter 15 for more information.

The third directive that addresses buffering, SecRequestBodyInMemoryLimit, controls how
much of a request body will be stored in RAM, but it only works with file upload
(multipart/form-data) requests:

Store up to 128 KB of request body data in memory. When
the multipart parser reaches this limit, it will start

using your hard disk for storage. That is generally slow,
but unavoidable.

SecRequestBodyInMemorylLimit 131072

The request bodies that fit within the limit configured with SecRequestBodyInMemoryLimit
will be stored in RAM. The request bodies that are larger will be streamed to disk. This
directive allows you to trade performance (storing request bodies in RAM is fast) for size
(the storage capacity of your hard disk is much bigger than that of your RAM).

Request Body Handling 37

Response Body Handling

Similarly to requests, responses consist of headers and a body. Unlike requests, however,
most responses have bodies. Use the SecResponseBodyAccess directive to tell ModSecurity to
observe (and buffer) response bodies:

Allow ModSecurity to access response bodies. We leave
this disabled because most deployments want to focus on
the incoming threats, and leaving this off reduces

memory consumption.

SecResponseBodyAccess Off

I prefer to start with this setting disabled, because many deployments don’t care to look at
what leaves their web servers. Keeping this feature disabled means ModSecurity will use less
RAM and less CPU. If you care about output, however, just change the directive setting to
On.

There is a complication with response bodies, because you generally only want to look at
the bodies of some of the responses. Response bodies make up the bulk of the traffic on
most web sites, most of which is just static files that don’t have any security relevance in
most cases. The response MIME type is used to distinguish interesting responses from those
that are not. The SecResponseBodyMimeType directive lists the response MIME types you’re
interested in:

Which response MIME types do you want to look at? You
should adjust this configuration to catch documents
but avoid static files (e.g., images and archives).
SecResponseBodyMimeType text/plain text/html

Note

To instruct ModSecurity to inspect response bodies for which the MIME type is
unknown (meaning that it was not specified in the response headers), use the
special string (null) as a parameter for SecResponseBodyMimeType.

You can control the size of a response body buffer via the SecResponseBodyLimit directive:

Buffer response bodies of up to 512 KB in length.
SecResponseBodyLimit 524288

The problem with limiting the size of a response body buffer is that it breaks sites
for which pages are longer than the limit. In ModSecurity 2.5, we introduced the
SecResponseBodyLimitAction directive, which allows ModSecurity users to choose what
happens when the limit is reached:

What happens when we encounter a response body larger
than the configured limit? By default, we process what

38 Chapter 3: Configuration

we have and let the rest through.
SecResponseBodyLimitAction ProcessPartial

If the setting is Reject, the response will be discarded and the transaction interrupted
with a 500 (Internal Server Error) response code. If the setting is ProcessPartial, which I
recommend, ModSecurity will process what it has in the buffer and allow the rest through.

At first glance, it may seem that allowing the processing of partial response bodies creates
a security issue. For the attacker who controls output, it seems easy to create a response
that’s long enough to bypass observation by ModSecurity—and this is true. However, if you
have an attacker with full control of output, it's impossible for any type of monitoring to
work reliably. For example, such an attacker could encrypt output, in which case it will
be opaque to ModSecurity. Response body monitoring works best to detect information
leakage, configuration errors, traces of attacks (successful or not), and data leakage in cases
in which an attacker does not have full control of output.

Other than that, response monitoring is most useful when it comes to preventing the data
leakage that comes from low-level error messages (e.g., database problems). Because such
messages typically appear near the beginning of a page, the ProcessPartial setting will
work just as well to catch them.

Dealing with Response Compression

When deploying ModSecurity in reverse proxy mode with backend servers that support
compression, make sure to set the SecDisableBackendCompression directive to On. Doing so
will hide the fact that the clients support compression from your backend servers, giving
ModSecurity access to uncompressed data. If you don’t disable backend compression, ModSe-
curity will see only the compressed response bodies (as served by the backend web servers).
To continue to use frontend compression, configure mod deflate in the proxy itself. The
SecDisableBackendCompression directive will not interfere with its operation.

Filesystem Locations

We've made the decisions regarding filesystem locations already, so all we need to do now
is translate them into configuration. The following two directives tell ModSecurity where to
create temporary files (SecTmpDir) and where to store persistent data (SecDataDir):

The location where ModSecurity will store temporary files

(e.g., when it needs to handle a multipart request

body that's larger than the configured limit). If you don't
specify a location here, your system's default will be used.
It's recommended that you specify a location that's private.
SecTmpDir /usr/local/modsecurity/var/tmp/

Filesystem Locations 39

The location where ModSecurity will keep its data. This,
too, needs to be a path that other users can't access.
IMPORTANT: The path defined by SecDataDir must reside on
on the same partition as the path defined by SecTmpDir.
SecDataDir /usr/local/modsecurity/var/data/

File Uploads

Next, we'll configure the handling of file uploads. We'll configure the folder where ModSe-
curity will store intercepted files, but keep this functionality disabled for now. File upload
interception slows down ModSecurity and can potentially consume a lot of disk space, so
you’ll want to enable this functionality where you really need it.

The location where ModSecurity will store intercepted
uploaded files. This location must be private to ModSecurity.
SecUploadDir /usr/local/modsecurity/var/upload/

By default, do not intercept (nor store) uploaded files.
SecUploadKeepFiles Off

For now, we also assume that you will not be using external scripts to inspect uploaded
files. That allows us to keep the file permissions more secure, by allowing access only to the
apache user:

Uploaded files are by default created with permissions that
don't allow any other user to access them. You may need to
relax that if you want to interface ModSecurity with an

external program (e.g., an anti-virus program).
SecUploadFileMode 0600

You should set the maximum number of files that ModSecurity will handle in a request:

Limit the number of files we are willing
to handle in any one request.
SecUploadFilelimit 32

There isn't a limit by default, so setting one in the configuration is very important. The issue
here first is that it’s easy for an attacker to include many embedded files (hundreds or even
thousands) in a single multipart/form-data request, but also you don’t want ModSecurity to
create that many files on the filesystem (which happens only if the storage or validation of
uploaded files is required), because it would create a denial of service situation.

Debug Log

Debug logging is very useful for troubleshooting, but in production you want to keep it at
minimum, because too much logging will affect performance. The debug log will duplicate

40 Chapter 3: Configuration

what you’ll also see in Apache’s error log up to level 3. If the error log is growing fast and
has to be rotated quickly, it can be useful to keep the ModSecurity-related messages longer
in the debug log. However, if there are a lot of ModSecurity alerts, redundancy will be an
issue, and you’ll need to make sure you also rotate the debug log regularly. It's perfectly okay
to run with a debug log level of 0 and to rely on the Apache error log. Any value above 3 is
not recommended in production.

Debug log
SecDebuglog /usr/local/modsecurity/var/log/debug.log
SecDebugloglevel 3

Audit Log

In ModSecurity terminology, audit logging refers to the ability to record complete transac-
tion data. For a typical transaction without a request body, this translates to roughly 1 KB.
Multiply that by the number of requests you're receiving daily and you’ll soon realize that
you want to keep this type of logging to an absolute minimum.

Our default configuration will use audit logging only for the transactions that are relevant,
which means those that have had an error or a warning reported against them. Other
possible values for SecAuditEngine are On (log everything) and Off (log nothing).

Log only what's really necessary.
SecAuditEngine RelevantOnly

In addition, we'll also log the transactions with response status codes that indicate a server
error (500-599). You should never see such transactions on an error-free server. The extra
data logged by ModSecurity may help you uncover security issues or problems of some
other type.

Also log requests that cause a server error.
SecAuditlLogRelevantStatus "5

Alternatively, you can also log client errors in the range of 400-499. This can be useful
because affected users often will contact you with support questions. You probably don’t
want to log status code 404 (Not Found) in this case, so the complete regular expression to
keep an audit log of all erroneous requests—with the exception of 404—is as follows:

Also log requests that cause an error.
SecAuditLogRelevantStatus "~(?:5|4(?!04))"

The audit log separates its records into multiple parts. Each part is assigned a single
letter. You enable the logging of the individual parts by listing them as parameters of the
SecAuditLogParts directive. By default, we log all transaction data except response bodies.

Audit Log 41

This assumes that you will seldom log (as it should be), because response bodies can take up
a lot of space.

Log everything we know about a transaction.
SecAuditlogParts ABDEFHIJKZ

Using the same assumption, we choose to use a single file to store all the recorded informa-
tion. This is not adequate for installations that will log a lot and it prevents remote logging,
but it’s good enough to start with:

Use a single file for logging.
SecAuditLogType Serial
SecAuditLog /usr/local/modsecurity/var/log/audit.log

As the final step, we'll configure the path that will be used in the more scalable audit logging
scheme, called concurrent logging, even though you won’t need to use it just yet:

Specify the path for concurrent audit logging.
SecAuditLogStorageDir /usr/local/modsecurity/var/audit/

Default Rule Match Policy

Now that we're nearing the end of the configuration, you need to decide what you want to
happen when a rule matches. We recommend that you start without blocking, because that
will allow you to monitor the operation of your installation over a period of time and ensure
that legitimate traffic is not being marked as suspicious:

SecDefaultAction "phase:1,log,auditlog,pass”

This default policy will work for all rules that follow it in the same configuration context.
For more information, turn to the section called “Configuration Contexts” in Chapter 7.

Note

It’s possible to write rules that ignore the default policies. If you're using third-party
rulesets and are not sure how they will behave, consider switching the entire engine
to detection only (using SecRuleEngine). No rule will block when you do that,
regardless of how it was designed to work.

Handling Processing Errors

As you may recall from our earlier discussion, ModSecurity avoids making decisions for
you. It will detect problems as they occur, but it will generally leave it to you to deal with
them. In our default configuration, we'll have a couple of rules to deal with the situations
that ModSecurity can’t deal with on its own: processing errors.

42 Chapter 3: Configuration

Note

Im including these rules here because they should be an integral part of every
configuration, but you shouldn’t worry if you don’t understand exactly what it is
that they do. The mechanics of the rules will be explained in detail later in the
section called “Variable Expansion” in Chapter 6.

There are currently three types of processing errors:
1. Request and response buffering limits encountered
2. Parsing errors
3. PCRE limit errors

Normally, you don't need to be too concerned about encountering buffer limits, because
they often occur during normal operation. If you do want to take them into account when
making decisions, you can use the INBOUND_DATA_ERROR and OUTBOUND_DATA ERROR variables
for request and response buffering, respectively.

ModSecurity parsers are designed to be as permissive as possible without compromising
security. They will raise flags when they fail, but also when they encounter something
suspicious. By checking the flags in your rules, you can detect the processing errors.

Currently, the only parsing errors that can happen are request body processor er-
rors. We'll use two rules to handle such errors. The first rule will examine the
REQBODY_PROCESSOR_ERROR flag for errors. This flag will be raised whenever a request body
parsing error occurs, regardless of which parser was used for parsing:

Verify that we've correctly processed the request body.

As a rule of thumb, when failing to process a request body

you should reject the request (when deployed in blocking mode)

or log a high-severity alert (when deployed in detection-only mode).

SecRule REQBODY_ PROCESSOR ERROR "!@eq 0" \
"1d:2000,phase:2,block,t:none,log,msg: 'Failed to parse request body:

%{REQBODY_PROCESSOR_ERROR_MSG}'"

The second rule is specific to the multipart/form-data parser, which is used to handle file
uploads. If it detects a problem, it produces an error message detailing the flaws:

By default, be strict with what you accept in the multipart/form-data

request body. If the rule below proves to be too strict for your

environment, consider changing it to detection-only. You are encouraged
not to remove it altogether.

SecRule MULTIPART STRICT ERROR "!@eq 0" \
"id:2001,phase:2,block,t:none,log,msg: ‘Multipart request body \

failed strict validation: \

PE %{REQBODY_PROCESSOR _ERROR}, \

BQ %{MULTIPART BOUNDARY QUOTED}, \

Handling Processing Errors 43

BW %{MULTIPART BOUNDARY WHITESPACE}, \

DB %{MULTIPART DATA BEFORE}, \

DA %{MULTIPART DATA AFTER}, \

HF %{MULTIPART HEADER FOLDING}, \

LF %{MULTIPART LF_LINE}, \

SM %{MULTIPART MISSING SEMICOLON}, \

1Q %{MULTIPART INVALID QUOTING}, \

IF %{MULTIPART INVALID HEADER FOLDING}, \
FE %{MULTIPART FILE_LIMIT EXCEEDED}'"

Errors specific to multipart parsers should never occur unless an attacker genuinely tries
to bypass ModSecurity by manipulating the request body payload. Some versions of ModSe-
curity did have false positives in this area, but the most recent version should be false-posi-
tive-free. If you do encounter such a problem, feel free to post it to the ModSecurity users’
mailing list, noting that you've encountered an interesting attacker or a ModSecurity bug.

PCRE limits are set to protect the server from denial of service attacks via excessive
resource consumption in regular expression calculations. The default limits are very
low. Therefore, users can control the setting of the limits via SecPcreMatchLimit and
SecPcreMatchLimitRecursion. The debug log will identify rules that have exceeded the
limits—for example:

[3] Rule 292d670 [id "941140"][file "/usr/local/modsecurity/etc/core-rulese
/REQUEST-941-APPLICATION-ATTACK-XSS.conf"][1line "514"] - Execution error - PCRE ¢
limits exceeded (-8): (null).

For now, leave the PCRE limits defaults as they are, but add a rule to warn us when they’re
exceeded:

SecRule TX:MSC_PCRE_LIMITS EXCEEDED "@eq 1" \
"1d:9000,phase:5,pass,t:none,log,msg: 'PCRE limits exceeded"'"

I've used phase 5 for the rule, but if you're really paranoid and think that exceeding PCRE
limits is grounds for blocking, switch to phase 2 (and change pass to something else).

Verifying Installation

After youre done installing and configuring ModSecurity, we recommend undertaking a
short exercise to ensure everything is in order:

1. Add a simple blocking rule to detect something in a parameter. For example, the
following rule will inspect all parameters for the string MY_UNIQUE_TEST_STRING, re-
sponding with a 503 (Service Unavailable) on a match:

SecRule ARGS "@contains MY UNIQUE TEST STRING" \
"1d:2000,phase:2,deny,status:503,log"

44 Chapter 3: Configuration

2. Restart Apache, using the graceful restart option if your server is in production and
you don’'t want any downtime.

3. Send a GET request, using your browser, to the ModSecurity-protected server,
including the “attack payload” in a parameter (i.e., http://www.example.com/?
test=MY_UNIQUE_TEST_STRING). ModSecurity should block the request.

4. Verify that the message has appeared in both the error log and the debug log and that
the audit log contains the complete transaction.

5. Submit a POST request that triggers the test rule. With this request, you're testing
whether ModSecurity will see the request body and whether it will be able to pass the
data in it to your backend after inspection. For this test in particular, it’s important
that you're testing with the actual application you want to protect. Only doing so
will exercise the entire stack of components that make the application. This test is
important because of the way Apache modules are written (very little documentation,
so module authors generally employ any approach that “works” for them); you can
never be 100% certain that a third-party module was implemented correctly. For
example, it’s possible to write a module that will essentially hijack a request early on
and bypass all other modules, including ModSecurity. Were doing this test simply
because we don’t want to leave anything to chance.

6. If you want to be really pedantic (I have been, on many occasion; you can never be
too sure), you may want to consider writing a special test script for your application,
which will somehow record the fact that it has been invoked (mine usually writes to a
file in /tmp). By sending a request that includes an attack—which will be intercepted
by ModSecurity—and verifying that the script has not been invoked, you can be
completely sure that blocking works as intended.

7. Remove the test rule and restart Apache again.

8. Finally, and just to be absolutely sure, examine the permissions on all Apache and
ModSecurity locations and verify that they’re correct.

You're done!

Summary

In this chapter, we looked at the core configuration options of ModSecurity. Strictly speak-
ing, we could have left many of these options set to their defaults and spent about a tenth of
this time on configuration, but I've always found it better to explicitly define every setting;
with that approach, you end up with the configuration that’s tailored to your needs. In
addition, you get to know ModSecurity better, which might prove crucial at some point in
the future.

Summary 45

Quite a few more optional configuration directives exist. Most of them are highly advanced
or only applicable in rare and special situations. They’re covered in Chapter 15, Directives.

We didn’t pay much attention to logging in this chapter, opting to configure both the
debug log and the audit log conservatively. However, there’s a wealth of logging options
in ModSecurity. In the next chapter, I'll discuss logging in detail and conclude with the
configuration topics.

46 Chapter 3: Configuration

4 Logging

This chapter covers the logging capabilities of ModSecurity in detail. Logging is a big part
of what ModSecurity does, so it'’s not surprising that there are extensive logging facilities
available for your use.

Debug Log

The debug log is going to be your primary troubleshooting tool, especially initially, while
you're learning how ModSecurity works. You're likely to spend a lot of time with the debug
log cranked up to level 9, observing why certain things work the way they do. There are two
debug log directives, as you can see in Table 4.1.

Table 4.1. Debug log directives

Directive Description
SecDebuglog Path to the debug log file
SecDebuglLoglevel Debug log level

In theory, there are 10 debug log levels, but not all are used. You'll find the ones that are
in Table 4.2. Messages with levels 1-3 are copied to Apache’s error log. The higher-level
messages are there mostly for troubleshooting and debugging.

You will want to keep the debug log level in production low (either at 3 if you want a copy
of all messages in the debug log or at 0 if you're happy having the messages only in the error
log). You can expect in excess of 50 debug log messages (each message is an I/O operation)
and at least 7 KB of data for an average transaction; logging all that for every transaction
consumes a lot of resources.

This is what a single debug log line looks like:

[24/3ul/2016:17:38:25 +0200] [192.168.3.111/sid#15e21f8][rid#7f683c002970]«
[/index.html1][4] Initialising transaction (txid V5Tg8X8AAQEAABXZdiwAAAAA).

47

The line starts with metadata that is often longer than the message itself: the time, client’s IP
address, internal server ID, internal request ID, request URI, and, finally, the debug log level.
The rest of the line is occupied by the message, which is essentially free-form. You will find
many examples of debug log messages throughout this guide.

Table 4.2. Debug log levels

Debug log level ~ Description

No logging

Errors (e.g., fatal processing errors, blocked transactions)
Warnings (e.g., nonblocking rule matches)

Notices (e.g., nonfatal processing errors)

Handling of transactions and performance

ol R N = O

Detailed syntax of the rules
6-8 Not used
9 Detailed information about transactions (e.g., variable expansion and setting of variables)

Debugging in Production

There’s another reason to avoid extensive debug logging in production, and thats simply
that it’s very difficult. There’s usually so much data that it sometimes takes ages to find the
messages that pertain to the transaction you want to investigate. In spite of the difficulties,
you may occasionally need to debug in production because you can’t reproduce a problem
elsewhere.

Note

The audit log can record all the rules that matched during an HTTP transaction.
This helpful feature minimizes the need for debugging in production, but it still
can't tell you why some rules didn’t match.

One way to make debugging easier is to keep debug logging disabled by default and enable
it only for the part of the site that you want to debug. You can do this by overriding the
default configuration, using the <Location> context directive, as shown ahead. While you're
doing that, it may be a good idea to specify a different debug log file altogether. That way,
you'll keep the main debug log file free of your tests.

<Location /myapp/>

SecDebugloglevel 9

SecDebuglog /usr/local/modsecurity/var/log/troubleshooting.log
</Location>

This approach, although handy, still doesn’t guarantee that the volume of information in
the debug log will be manageable. What you really want is to enable debug logging for the

43 Chapter 4: Logging

requests a specific client sends. ModSecurity provides a solution for this by allowing a debug
log level to be changed at runtime, on a per-request basis. This is done by using the special
ctl action that allows some of the configuration to be updated at runtime.

All you need to do is somehow uniquely identify yourself. In some circumstances, observing
the IP address will be sufficient:

SecRule REMOTE_ADDR "@ipMatch 192.168.1.1" \
id:1000,phase:1,pass,nolog,ctl:debugloglevel=9

Using your IP address won't work in cases in which youre hidden by a network address
translation of some sort and share an IP address with a bunch of other users. One straight-
forward approach is to modify your browser settings to put a unique identifier in your
User-Agent request header. (How exactly that’s done depends on the browser you're using.)

SecRule REQUEST HEADERS:User-Agent "@contains YOUR_UNIQUE_ID" \
id:1000,phase:1,pass,nolog,ctl:debugloglevel=9

This approach, although easy, has a drawback: all your requests will cause an increase in
debug logging. You may think of an application in terms of dynamic pages, but extensive
debug logging will be enabled for every single embedded object, too. Also, if youre dealing
with an application that you're using frequently, you may want to avoid excessive logging.

The most accurate way to dynamically enable detailed debug logging is to manually indicate
to ModSecurity the exact requests on which you want it to increase logging. You can do this
by modifying your User-Agent string on a request-by-request basis, using one of the tools
that support request interception and modification. You can do so via a browser extension
or can use an interception proxy. Armed with such a tool, you submit your requests in your
browser, modify them in the tool, and then allow them through, modified. It’s a bit involved,
but a time-saver overall. While you're at it, it's a good idea to make your identifiers similar
enough for your rule to always detect them, but different enough to allow you to use a
search function to quickly find the exact request in a file with thousands of lines.

Audit Log

It’s a little-known fact that the earliest versions of ModSecurity essentially had one feature:
the ability to record complete HTTP transaction data. Being able to see exactly what’s
exchanged between browsers and servers is very important for developers, yet few web
servers make it possible. The audit log, which does just that, was one of the first features
implemented.

ModSecurity is currently able to log most, but not all, transactions. Transactions involv-
ing errors (e.g., 400 and 404 transactions) and some third-party Apache modules like
mod_auth_cas use a different execution path, which ModSecurity doesn’t support. This

Audit Log 49

means that they shortcut the ModSecurity rule phases 1 to 4, effectively preventing the
module from extracting the necessary data out of the request. Audit log directives are
shown in Table 4.3.

Table 4.3. Audit log directives

Directive Description

SecAuditEngine Controls the audit log engine; possible values are On, 0ff, or RelevantOnly
SecAuditlLog Path to an audit log file

SecAuditlog2 Path to another audit log file (copy)

SecAuditLogDirMode Permissions (mode) of the folders created for the concurrent log type
SecAuditLogFileMode Permissions (mode) of the files created for the concurrent log type
SecAuditLogFormat Format of the audit log (native or JSON)

SecAuditlogParts Specifies which part of a transaction will be logged
SecAuditLogRelevantStatus Specifies which response statuses will be considered relevant
SecAuditLogStorageDir Path where concurrent audit log files will be stored
SecAuditLogType Specifies the type of audit log to use: Serial or Concurrent

A typical audit log entry (short, GET request, brief User-Agent, without a body, and no
logging of the response body) consumes around 1.5 KB. Requests with bodies will increase
the amount of data that needs to be logged, as well as the logging of response bodies.

Logically, each audit log entry is a single file. When serial audit logging is used, all entries
will be placed within one file, but with concurrent audit logging, one file per entry is used.
There is a native format for the individual entries or an alternative JSON format. Looking
at a single audit log entry in the default native format, you’ll find that it consists of multiple
independent segments (parts):

--6b253045-A--
::éb253045-B--
::éb253045-C—-
::éb253045-F--
::éb253045-E—-
::éb253045-H--
::éb253045-2—-

A segment begins with a boundary and ends when the next segment begins. The only
exception is the terminating segment (Z), which consists only of the boundary. The idea

50 Chapter 4: Logging

behind the use of multiple segments is to allow each audit log entry to contain potentially
different information. Only parts A and Z are mandatory; the use of the other parts is
controlled with the SecAuditlLogParts directive. Table 4.4 contains the list of all audit log
parts, along with a description of their purpose.

Table 4.4. Audit log parts

Part letter Description
A Audit log header (mandatory)
B Request headers
C Request body
D Reserved
E Response body
F Response headers
G Reserved
H Audit log trailer, which contains additional data
I Reduced multipart request body, which excludes files (alternative to part C)
] Information on uploaded files (multipart requests)
K Contains a list of all rules that matched for the transaction
yA Final boundary (mandatory)

Native Format Audit Log Entry Example

Every audit log entry begins with part A, which contains the basic information about the
transaction: time, unique ID, source IP address, source port, destination IP address, and
destination port:

--be58b513-A--
[27/3ul/2016:05:46:16 +0200] V5guiH8AAQEAADTeJ2wAAAAK 192.168.3.1 50084 <
192.168.3.111 80

Part B contains the request headers and nothing else:

POST /index.html?a=test HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://example.com/index.html

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 6

Native Format Audit Log Entry Example 51

Part C contains the raw request body, typically that of a POST request:

--be58b513-C--
b=test

Part F contains the response headers:

--be58b513-F--

HTTP/1.1 200 OK

Last-Modified: Sun, 24 Jul 2016 15:24:49 GMT
ETag: "2d-5386344b7871a"

Accept-Ranges: bytes

Content-Length: 159

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: text/html

Part E contains the response body:

--be58b513-E--
<html><body><h1>It works!</h1></body></html>

<form action="index.html?a=test" method="POST">
<textarea name="b">test</textarea>

<input type=submit>

</form>

The final part, H, contains additional transaction information:

--be58b513-H--

Stopwatch: 1470025005945403 1715 (- - -)

Stopwatch2: 1470025005945403 1715; combined=26, p1=0, p2=0, p3=0, p4=0, p5=26, <
sr=0, sw=0, 1=0, gc=0

Response-Body-Transformed: Dechunked

Producer: ModSecurity for Apache/2.9.1 (http://www.modsecurity.org/).

Server: Apache

Engine-Mode: "ENABLED"

Part K contains a list of rules that matched in a transaction. It isn’t unusual for this part to
be empty, but if you have a complex ruleset, it may show quite a few rules. Audit logs that
record transactions for which there were warnings or those that were blocked will contain at
least one rule here. In this example, you’ll find a rule that emits a warning on every request:

--be58b513-K--
SecAction "phase:2,auditlog,log,pass,msg: 'Matching test'"

Every audit log file ends with the terminating boundary, which is part Z:

--be58b513-Z--

52 Chapter 4: Logging

JSON Format Audit Log

The JSON audit log format was introduced with ModSecurity 2.9.1. It’s enabled via the
SecAuditLogFormat directive. It's conceptually similar to the native format, but organizes
information in a different way. The native audit log parts can be roughly mapped to the
JSON format blocks in the following way:

o Transaction: A

o Request: Band C

« Uploads:] (optional)
o Response: E and F
o Matched_rules: K

e Audit data: H

More information about this additional audit log format is available in the section called
“Parts in JSON Format” in Chapter 20.

Concurrent Audit Log

Initially, ModSecurity supported only the serial audit logging type. Concurrent logging was
introduced to address two issues:

o Serial logging is only adequate for moderate use, because only one audit log entry
can be written at any one time. Serial logging is fast (logs are written at the end of
every transaction, all in one go), but it doesn’t scale well. In the extreme, a web server
performing full transaction logging practically processes only one request at any one
time.

+ Real-time audit log centralization requires individual audit log entries to be deleted
once they’re handled, which is impossible to do when all alerts are stored in a single
file.

Concurrent audit logging changes the operation of ModSecurity in two aspects. To ob-
serve the changes, switch to concurrent logging without activating mlogc by changing
SecAuditLogType to Concurrent (don't forget to restart Apache).

First, as expected, each audit log entry will be stored in a separate file. The files will be
created not directly in the folder specified by SecAuditLogStorageDir but in an elaborate
structure of subfolders, the names of which will be constructed from the current date and
time:

20160727
20160727/20160727-0546

JSON Format Audit Log 53

20160727/20160727-0546/20160727-054616-V5guiH8AAQEAADTeJZWAAAAK
20160727/20160727-0546/20160727-054616-V5guBH8AAQEAADTeJ2cAAAAA

The purpose of the scheme is to prevent too many files from being created within one
directory; many filesystems have limits that can be relatively quickly reached on a busy web
server. The first two parts in each filename are based on time (YYYYMMDD and HHMMSS). The
third parameter is the unique transaction ID.

In addition to each entry getting its own file, the type of the main audit log file will change
when concurrent logging is activated. The file that previously stored the entries themselves
will now be used as a record of all generated audit log files:

192.168.3.130 192.168.3.1 - - [27/Jul/2016:05:46:16 +0200] "GET / HTTP/1.1" 200 ¢
218 "-" "-" V5guiH8AAQEAADTe]2wAAAAK "-" /20160727/20160727-0546<
/20160727-054616-V5guiH8AAQEAADTeJ2wAAAAK 0 1592 mds5:48e90bf2a5ab9e7368d8b579f14bf8«
2b

The index file is similar in principle to a web server access log. Each line describes one
transaction, duplicating some of the information already available in audit log entries. The
purpose of the index file is twofold:

o The first part, which duplicates some of the information available in audit logs, serves
as a record of everything that you've recorded so that you can easily search through it.

o The second part tells you where an audit log entry is stored (e.g., /
20160727/20160727-0546/20160727-054616-V5guiH8AAQEAADTeJ2wAAAAK), where it be-
gins within that file (always zero, because this feature is not used), how long it is,
and its MD5 hash (useful to verify integrity).

When real-time audit log centralization is used, this information isn’t written to a file.
Instead, it's written to a pipe, which means that it’s sent directly to another process, which
deals with the information immediately. You’ll see how that works in the next section.

Remote Logging

ModSecurity comes with a tool called mlogc (short for ModSecurity Log Collector), which
can be used to transport audit logs in real time to a remote logging server. This tool has the
following characteristics:

Secure
The communication path between your ModSecurity sensors and the remote logging
server is secured with SSL and authenticated using HT TP basic authentication.

Efficient
Remote logging is implemented with multiple threads of execution, which allow for
many alerts to be handled in parallel. Existing HTTP connections are reused.

54 Chapter 4: Logging

Reliable
An audit log entry will be deleted from the sensor only once its safe receipt is
acknowledged by the logging server.

Buffered
The mlogc tool maintains its own audit entry queue, which has two benefits. First, if
the logging server is not available, the entries will be preserved and submitted once
the server comes back online. Second, mlogc controls the rate at which audit log
entries are submitted, meaning that a burst of activity on a sensor will not result in an
uncontrolled burst of activity on the remote logging server.

Note

Remote logging uses a simple but effective protocol based on HTTP. You'll find it
documented in the section called “Remote Logging Protocol” in Chapter 20.

If you've followed my installation instructions, you’ll have mlogc compiled and sitting in
your bin/ folder. To proceed, you'll need to configure it, then add it to the ModSecurity
configuration.

How Remote Logging Works

Remote logging in ModSecurity is implemented through an elaborate scheme designed to
minimize the possibility of data loss. Here’s how it’s done:

1. ModSecurity processes a transaction and creates an audit log entry file on disk, as
explained in the section called “Concurrent Audit Log” earlier in this chapter.

2. ModSecurity then notifies the mlogc tool, which runs in a separate process. The notifica-
tion contains enough information to locate the audit log entry file on disk.

3. The mlogc tool adds the audit log entry information to the in-memory queue and to its
transaction log (the mlogc-transaction.log file by default).

4. One of many worker threads that run within mlogc takes the audit log entry and submits
it to a remote logging server. The entry is then removed from the in-memory queue and
the transaction log is notified.

5. A periodic checkpoint operation, initiated by mlogc, writes the in-memory queue to the
disk (to the mlogc-queue.log file by default) and erases the transaction log.

If mlogc crashes, Apache will restart it automatically. When an unclean shutdown is detected,
mlogc will reconstruct the entry queue using the last known good point (the on-disk queue)
and the record of all events since the moment the on-disk queue was created, which are stored
in the transaction log.

Remote Logging 95

Configuring Remote Logging

The mlogc configuration file is similar to that of Apache, only simpler. We usually place it
in /usr/local/modsecurity/etc/mlogc.conf. First, we need to tell mlogc where its “home”
is, which is where it will create its log files. The mlogc log files are very important, because
—as it’s Apache that starts mlogc and ModSecurity that talks to it—we never interact with
mlogc directly. We'll need to look in the log files for clues in case of problems:

Specify the folder where the logs will be created
CollectorRoot /usr/local/modsecurity/var/log

Define what the log files will be called. You probably
won't ever change the names, but mlogc requires you

to define it.

ErrorLog mlogc-error.log

The error log level is a number between 0 and 5, with
level 3 recommended for production (5 for troubleshooting).
ErrorLoglevel 3

Specify the names of the data files. Similar comment as

above: you won't want to change these, but they are required.
TransactionLog mlogc-transaction.log

QueuePath mlogc-queue.log

LockFile mlogc.lck

Then, we tell mlogc where to find audit log entries. The value given to LogStorageDir should
be the same as the one you provided to ModSecurity’s SecAuditLogStorageDir:

Where are the audit log entries created by ModSecurity?
LogStorageDir /usr/local/modsecurity/var/audit

Next, we need to tell mlogc where to submit audit log entries. We identify a remote server
with a URL and credentials:

Remote logging server details.

ConsoleURI "https://REMOTE_ADDRESS :8888/rpc/auditLogReceiver"
SensorUsername "USERNAME"

SensorPassword "PASSWORD"

The remaining configuration directives aren’t required, but it’s usually a good idea to
explicitly configure your programs, rather than let them use their defaults:

How many parallel connections to use to talk to the server,
and how much to wait (in milliseconds) between submissions.
These two directives are used to control the rate at which
audit log entries are submitted.

56 Chapter 4: Logging

MaxConnections 10
TransactionDelay 50

How many entries is a single thread allowed to process
before it must shut down.
MaxWorkerRequests 1000

How long to wait at startup before really starting.
StartupDelay 5000

Checkpoints are periods when the entries from the transaction
log (which is written to sequentially) are consolidated with
the entries in the main queue.

CheckpointInterval 15

If network communication fails, suspend log
submission to give the server time to recover.
ServerErrorTimeout 60

Note

The mlogc tool will take audit log entries created by ModSecurity, submit them to
a remote logging server, and delete them from disk, but it will leave the empty
folders (that were used to store the entries) behind. You’ll have to remove them
yourself, either manually or with a script.

Activating Remote Logging

You'll need to make two changes to your default configuration. First, you need to switch to
concurrent audit logging, because that’s the only way mlogc can work:

SecAuditlLogType Concurrent
Next, you need to activate mlogc, which is done using the piped logging feature of Apache:

SecAuditLog "|/usr/local/modsecurity/bin/mlogc <
/usr/local/modsecurity/etc/mlogc.conf"

The pipe character at the beginning of the line tells Apache to treat what follows as a
command line. As a result, whenever you start Apache from now on, it will start a copy of
mlogc in turn and keep it running in parallel, leaving a one-way communication channel
that will be used by ModSecurity to inform mlogc of every new audit log entry it creates.

Please note that you still need to configure SecAuditLogStorageDir because ModSecurity
will refuse to work properly without it. Your complete configuration should look like this
now:

Activating Remote Logging 57

SecAuditEngine RelevantOnly

SecAuditlLogRelevantStatus 5

SecAuditlogParts ABDEFHIJKZ
SecAuditLogType Concurrent
SecAuditLog "|/usr/local/modsecurity/bin/mlogc «
/usr/local/modsecurity/etc/mlogc.conf"
SecAuditLogStorageDir /usr/local/modsecurity/var/audit/

If you restart Apache now, you should see mlogc running:

USER
root
root

apache
apache
apache
apache
apache

PID COMMAND

11845 /usr/sbin/apache2 -k start

11846 /usr/local/modsecurity/bin/mlogc
/usr/local/modsecurity/etc/mlogc.conf

11847 /usr/sbin/apache2 -k start

11848 /usr/sbin/apache2 -k start

11849 /usr/sbin/apache2 -k start

11850 /usr/sbin/apache2 -k start

11851 /usr/sbin/apache2 -k start

If you go to the log/ folder, you should see two new log files:

-IW-T---
-IW-I---

-- 1 root
-- 1 root

-rw-r--r-- 1 root
-Irw-r--r-- 1 root

root 83K Jul 29 15:12 audit.log

root
root
root

68M Jul 29 15:12 debug.log
769 Jul 30 05:31 mlogc-error.log

0 Jul 30 05:31 mlogc-transaction.log

If you look at the mlogc-error.log file, there will be signs of minimal activity (the times-
tamps from the beginning of every line were removed for clarity):

[3] [5877/0
[3] [5877/0
[3] [5897/0
[3] [5897/0
[3] [5877/0
[3] [5877/0
[3] [5877/0
[3] [5897/0

]
]
]
]
]
]
]
]

Configuring ModSecurity Audit Log Collector 2.9.1.

Delaying execution for 5000ms.

Configuring ModSecurity Audit Log Collector 2.9.1.

Delaying execution for 5000ms.

Queue file not found. New one will be created.

Caught SIGTERM, shutting down.

ModSecurity Audit Log Collector 2.9.1 terminating normally.
Queue file not found. New one will be created.

It's normal for two copies of mlogc to have run, because that's how Apache treats all piped
logging programs. It starts two (one while it’s checking configuration), but leaves only one
running. The second token on every line in the example is the combination of process ID
and thread ID. Thus, you can see how there are two processes running at the same time
(PID 5877 and PID 5897). Because only one program can handle the data files, mlogc is
designed to wait for a while before it does anything. Basically, if it still lives after the delay,
that means it’s the copy that’s meant to do something.

58

Chapter 4: Logging

What happens if you make an error in the configuration file, preventing mlogc from work-
ing properly? As previously discussed, mlogc can't just respond to you on the command line,
so it will do the only thing it can—that is, it will report the problem and shut down. (Don’t
be surprised if Apache continues to attempt to start it. That's what Apache does with piped
logging programs.)

If you make a mistake in defining the error log, you may get an error message in response to
the attempt to start Apache. The following is the error message youd get if you left ExrrorLog
undefined:

dev:/usr/local/modsecurity/etc# apache2ctl start
[1] [15997/0] Failed to open the error log (null): Bad address
[3] [15997/0] ModSecurity Audit Log Collector 2.9.1 terminating with error 1

If mlogc manages to open its error log, it will do what’s expected and write all error messages
there. For example:

[1] [16402/0] QueuePath not defined in the configuration file.
[3] [16402/0] ModSecurity Audit Log Collector 2.9.1 terminating with error 1

At this point, it's a good idea to delete the serial audit log file audit.log, or store it
elsewhere. Having switched to concurrent logging, that file won’t be updated anymore, and
it will only confuse you.

Troubleshooting Remote Logging

Assuming the default logging configuration (level 3), a single audit log entry handled by
mlogc will produce one line in the log file:

[3] [1748/7f65840009c0] Entry completed (0.109 seconds, 1415 bytes): ¢
V5wWORN8AAQEAAADbptJUAAABC

That’s basically all you need to know—that an entry has been safely transmitted to the
intended destination. Youll get more information when something goes wrong, of course.
For example, you'll see the following message whenever your logging server goes down:

[2] [23743/7ff2840009c0] Flagging server as errored after failure to submit entry «
V5wthX8AAQEAAE1D30YAAAAE (cURL code 7): Failed to connect ¢
to loghost port 8888: Connection refused

The message will appear on the first failed delivery, and then once every minute until the
server becomes operational. This is because mlogc will shut down its operation for a short
period whenever something unusual happens with the server. Only one thread of operation
will continue to work to probe the server, with processing returning to full speed once the
server recovers. You'll see the following information in the log:

Troubleshooting Remote Logging 59

[3] [1748/7f65840009c0] Clearing the server error flag after successful entry
submission: V5w1WX8AAQEAAAerQowAAADA

[3] [1748/765840009c0] Entry completed (0.887 seconds, 1415 bytes): <
V5w1WX8AAQEAAAerQowAAADA

Going back to the error message, the first part tells you that there’s a problem with the
server; the second part tells you what the problem is. In the previous case, the problem was
couldn’t connect to host, which means the server is down. See Table 4.5 for the description of
the most common problems.

Table 4.5. Common remote logging problems

Error message Description

Failed to connect The server could not be reached. This probably means that the server itself is down,
but it could also indicate a network issue. You can investigate the cURL return code to
determine the exact cause of the problem.

Possible SSL negotiation error Most often, this message means that you configured mlogc to submit over plaintext,
but the remote server uses SSL. Make sure the ConsoleURI parameter starts with
https://.

Unauthorized The credentials are incorrect. Check the SensorUsername and SensorPassword pa-
rameters.

For input string: “0, 0” A remote server can indicate an internal error, but such errors are treated as transient.

If you still can’t resolve the problem, I suggest that you increase the mlogc error log level
from 3 (NOTICE) to 5 (DEBUG2), restart Apache (graceful will do), and try to uncover more
information that would point to a solution. Actually, I advise you to perform this exercise
even before you encounter a problem, because an analysis of the detailed log output will
give you a better understanding of how mlogc works.

File Upload Interception

File upload interception is a special form of logging, in which the files being uploaded to
your server are intercepted, inspected, and stored—and all that before they are seen by an
application. The directives related to this feature are in Table 4.6, but you've already seen
them all in the section called “File Uploads” in Chapter 3.

60 Chapter 4: Logging

Table 4.6. File upload directives

Directive Description

SecUploadDir Specifies the location where intercepted files will be stored
SecUploadFilelimit Specifies the maximum number of file uploads processed
SecUploadFileMode Specifies the permissions that will be used for the stored files
SecUploadKeepFiles Specifies whether to store the uploaded files (On, Off, or RelevantOnly)

Storing Files

Assuming the default configuration suggested in this guide, you only need to change the
setting of the SecUploadKeepFiles directive to On to start collecting uploaded files. If, after a
few file upload requests, you examine /usr/local/modsecurity/var/upload, you'll find files
with names similar to these:

20160728-102354-V5nBGn8AAQEAACO1bNgAAAAA-file-b9irlZ
20160728-102354-V5nBGn8AAQEAACO1bNKAAAAC-file-TeZQZF

You can probably tell that the first two parts of a filename are based on the time of upload,
then the unique transaction ID follows, then the -file- part that is always the same, and
finally a random string of characters at the end. ModSecurity uses this algorithm to generate
filenames primarily to avoid filename collision and support the storage of a large number of
files in a folder. In addition, avoiding the use of a user-supplied filename prevents a potential
attacker from placing a file with a known name on a server.

When you store a file like this, it’s just a file and doesn’t tell you anything about the attacker.
Thus, for the files to be useful, you also need to preserve the corresponding audit log entries,
which will contain the rest of the information.

Note

Storage of intercepted files can potentially consume a lot of disk space. If youre
doing it, you should at least ensure that the filesystem that youre using for storage
is not the root filesystem; you don’t want an overflow to kill your entire server.

Inspecting Files

For most people, a more reasonable SecUploadKeepFiles setting is RelevantOnly, which
enables the storage of only the files that have failed inspection in some way. For this setting
to make sense, you need to have at least one external inspection script, along with a rule that
invokes it.

There are four separate variables involved with file uploads, and you need to pick the right
one for the inspection:

Storing Files 61

o FILES: Collection of filenames as provided by the client, sometimes including the path
to the file on the client’s filesystem.

o FILES_NAMES: Collection of names assigned to the files in the upload request—that is,
the names of the form fields describing the files.

o FILES_TMP_CONTENT: Collection containing the content of the files.

o FILES_TMPNAMES: Collection of temporary filenames and paths on the ModSecurity
server.

The best way to inspect a file is to pass the temporary filename to an inspection script, so
we settle on the FILES_TMPNAMES variable. Once this is clear, a file inspection rule is rather
simple:

SecRule FILES TMPNAMES "@inspectFile /usr/local/modsecurity/bin/file-inspect.pl” \
id:2000,phase:2,block,t:none,log

This example rule will invoke the /usr/local/modsecurity/bin/file-inspect.pl script for
every uploaded file. The script will be given the location of the temporary file as its first and
only parameter. It can do whatever it wants with the contents of the file, but it’s expected to
return a single line of output that consists of a verdict (1 if everything is in order and 0 for a
fault), followed by an error message—for example:

1 0K
Or:
0 Error

The alert message in the audit log will only display the verdict, but the debug log will display
the full error message. The following debug log lines are produced by the inspection file:

[4] Recipe: Invoking rule 2735e58; [file "/usr/local/apache/conf/httpd.conf pode
2016-07-28 10:10"] [line "238"] [id "2000"].

[5] Rule 2735e58: SecRule "FILES TMPNAMES" "@inspectFile /usr/local/apache/bine
/inspect-file.pl" "phase:2,1d:2000,block,t:none,log"

[4] Transformation completed in 1 usec.

[4] Executing operator "inspectFile" with param "/usr/local/modsecurity/bine
/file-inspect.pl" against FILES_TMPNAMES:f.

[9] Target value: "/tmp//20160728-103559-V5nD738AAQEAAD5bgSAAAAAA-file-yfp59Q"
[4] Executing /usr/local/apache/bin/file-inspect.pl to inspect /usr/locale
/modsecurity/var/tmp/<

20160728-103559-V5nD738AAQEAAD5bgsAAAAAA-file-yfp59Q.

[9] Exec: /usr/local/apache/bin/file-inspect.pl

[4] Exec: First line from script output: "1 OK"

[4] Operator completed in 2722317 usec.

[4] Rule returned o.

62 Chapter 4: Logging

If an error occurs—for example, if you make a mistake in the name of the script—you’ll get
an error message that looks similar to this one:

[9] Exec: /usr/local/modsecurity/bin/file inspect.pl
[1] Exec: Execution failed while reading output: /usr/local/modsecurity/bin/filee
_inspect.pl (End of file found)

Tip

If you write your inspection scripts in Lua, ModSecurity will be able to execute
them directly using an internal Lua engine. Not only will the internal execution be
faster, but from the Lua scripts you'll be able to access the complete transaction
context (which isn't available to any external programs).

Integrating with ClamAV

ClamAYV is a popular open source anti-virus program. If you have it installed, the following
script will allow you to utilize it to scan files from ModSecurity:

#!/usr/bin/perl
$CLAMSCAN = "/usr/bin/clamscan”;

if (@ARGV != 1) {
print "Usage: modsec-clamscan.pl FILENAME\n";
exit;

}
my ($FILE) = @ARGV;

$cmd = "$CLAMSCAN --stdout $FILE";
$input = “$cmd”;

$input =~ m/~(.+)/;

$error message = $1;

$output = "0 Unable to parse clamscan output";

if ($error message =~ m/: Empty file\.$/) {
$output = "1 empty file";

}

elsif ($error message =~ m/: (.+) ERROR$/) {
$output = "0 clamscan: $1";

}

elsif ($error message =~ m/: (.+) FOUND$/) {
$output = "0 clamscan: $1";

}
elsif ($error message =~ m/: OK$/) {

Integrating with ClamAV 63

$output = "1 clamscan: OK";

}

print "$output\n”;

Note

If you need a file to test with, you can download one from EICAR’s web site.! The
files at this location contain a test signature that will be picked up by ClamAV.

The error message from the integration script will return either the result of the inspection
of the file or an error message if the inspection process failed. The following example shows
a successful detection of a “virus™:

[9] Exec: /usr/local/modsecurity/bin/modsec-clamscan.pl

[4] Exec: First line from script output: "0 clamscan: Eicar-Test-Signature"

[4] Operator completed in 2628132 usec.

[2] Warning. File
"/usr/local/modsecurity/var/tmp/20160728-110518-V5nKzn8AAQEAADS5bgSEAAAAC-file-szWj6e
L" rejected by the approver script "/usr/local/modsecurity/bin/modsec-clamscan.pl":«
0 clamscan: Eicar-Test-Signature [file "/usr/local/modsecurity/etce

/rules.conf"] [line "238"] [id "2000"]

If you look carefully at the example output, you'll see that the inspection took more than
two seconds. This isn’t unusual (even for my slow virtual server), because were creating a
new instance of the ClamAV engine for every inspection. The scanning alone is fast, but
the initialization takes considerable time. A more efficient method would be to use the
ClamAV daemon (e.g., the clamav-daemon package on Debian) for inspection. In this case,
the daemon is running all the time, and the script is only informing it that it needs to
inspect a file.

Assuming you've followed the recommendation for the file permissions settings given in the
section called “Folder Locations” in Chapter 3, this is what you need to do:

1. Change the name of the ClamAV script from clamscan to clamdscan (note the added d
in the filename).

2. Add the ClamAYV user (typically clamav) to the apache group (don’t forget to restart
the ClamAV daemon to pick up the new group).

3. Relax the default file permissions used for uploaded files to allow group read by
changing SecUploadFileMode from 0600 to 0640.

An examination of the logs after the change in the configuration will tell you that there’s
been a significant improvement—from seconds to milliseconds:

LEICAR antimalware test file (Retrieved 15 January 2017)

64 Chapter 4: Logging

http://www.eicar.org/85-0-Download.html

[9] Exec: /usr/local/modsecurity/bin/modsec-clamscan.pl

[4] Exec: First line from script output: "0 clamdscan: Eicar-Test-Signature”

[4] Operator completed in 20581 usec.

[2] Warning. File "/usr/local/modsecurity/var/tmp/20160728-111500-V5nNFHSAAQEAAGO1b<
38AAAAA-file-vSR2dT" rejected by the approver script "/usr/local/modsecurity/bine
/modsec-clamscan.pl”: 0 clamscan: Eicar-Test-Signature [file "/usr/locale
/modsecurity/etc/rules.conf"] [line "239"] [id "2000"]

Advanced Logging Configuration

By now, you've seen how you have many facilities you can use to configure logging to work
exactly as you need it. The facilities can be grouped into four categories:

Static logging configuration
The various audit logging configuration directives establish the default (or static) au-
dit logging configuration. You should use this type of configuration to establish what
you want to happen in most cases. You should then use the remaining configuration
mechanisms (listed next) to create exceptions to handle edge cases.

Setting of the relevant flag on rule matches
Every rule match, unless suppressed, increments the transaction’s relevant flag. This
handy feature, designed to work with the RelevantOnly setting of SecAuditEngine,
allows you to trigger transaction logging when something unusual happens.

Per-rule logging suggestions
Rule matching and the auditlog and noauditlog actions don’t control logging direct-
ly. They should be viewed as mere suggestions; it’s up to the engine to decide whether
to log a transaction. They are also ephemeral, affecting only the rules with which they
are associated. They will be forgotten as the processing moves on to the next rule.

Dynamic logging configuration
Rules can make logging decisions that affect entire requests (through the ctl action),
but that functionality shouldn’t be used lightly. Most rules should be concerned only
with event generation. The ability to affect transaction logging should be used by
system rules placed in phase 5 and written specifically for the purpose of logging
control.

Increasing Logging from a Rule

The SecAuditlogParts directive allows you to configure exactly what parts (how much
information) you want logged for every transaction, but one setting won't be adequate
in all cases. For example, most configurations won't be logging response bodies, but that
information is often required to determine whether certain types of attacks (e.g., XSS) were
successful.

Advanced Logging Configuration 65

The following rule will detect only simple XSS attacks, but when it does, it will cause the
transaction’s response body to be recorded:

SecRule ARGS "@rx <script>" \
id:2000,phase:2,block,log,ctl:auditlLogParts=+E

Dynamically Altering Logging Configuration

The feature discussed in the previous section is very useful, but you may not always like the
fact that some rules change what youre logging. I know I wouldn’t! Luckily, it’s a problem
that can be resolved with the addition of a phase 5 rule that resets the logged audit log parts:

SecAction id:9000,phase:5,pass,nolog,ctl:auditLogParts=ABCDFGH

You can then decide on your own whether the logging of part E is justified. If youre using
full audit logging in particular, you'll need to manually increase the amount you log per
transaction. The HIGHEST SEVERITY variable, which contains the highest severity of the rules
that matched during a transaction, is particularly useful:

SecRule HIGHEST SEVERITY "@le 2" \
id:9000,phase:5,pass,nolog,ctl:auditLogParts=+E

Removing Sensitive Data from Audit Logs

Most web application programmers are taught always to use POST methods for transac-
tions that contain sensitive data. After all, its well known that request bodies are never
logged, meaning that sensitive data will never be logged, either. ModSecurity changes this
situation, because it allows for full transaction logging. To deal with sensitive data that
may find its way into the logs, ModSecurity uses the sanitiseArg, sanitiseRequestHeader,
sanitiseResponseHeader, sanitiseMatched, and sanitiseMatchedBytes sanitization actions.
You basically just need to tell ModSecurity which elements of a transaction you want
removed, and it will remove them for you, replacing their values in the log with asterisks.
The first three actions all require parameters that you will typically know at configuration
time, which means that you will invoke them unconditionally with SecAction. Sanitization
works when invoked from any phase, but you should always use phase 5, which is designed
for this type of activity.

Use sanitiseArg to prevent the logging of the parameters for which you know the names.
For example, let’s assume that you have an application that uses the password, oldPassword,
and newPassword parameters to transmit, well, passwords. This is what you’ll do:

SecAction "id:9000,phase:5,pass,nolog,\
sanitiseArg:password,\

66 Chapter 4: Logging

sanitiseArg:oldPassword,\
sanitiseArg:newPassword"

Similarly, use sanitiseRequestHeader and sanitiseResponseHeader to remove the contents
of the headers for which you know the names. For example, if you have an application that
uses HTTP basic authentication, you'll need the following rule to prevent passwords from
being logged:

SecAction "id:9000,phase:5,pass,nolog,\
sanitiseRequestHeader:Authorization"

The last action, sanitiseMatched, is used when you need to sanitize a parameter for which
you don’t know the name in advance. My first example will sanitize the contents of every
parameter that has the word password in the name:

SecRule ARGS NAMES "@rx password" \
"i1d:9000,phase:5,pass,nolog,sanitiseMatched"

In the following example, we look for anything that resembles a credit card number and
then sanitize it:

SecRule ARGS "@verifyCC \d{13,16}" \
"id:9000,phase:5,pass,nolog,sanitiseMatched"

Finally, the sanitiseMatchedBytes action can remove the parts of input that contain sensi-
tive information only, rather than entire parameters. This action works only in conjunction
with operators that are based on regular expressions (e.g., @rx, @verifyCC, etc.) and further
requires the capture action to be specified:

SecRule ARGS "@verifyCC \d{13,16}" \
"1d:9000,phase:5,pass,capture,nolog,sanitiseMatchedBytes"

When further parameters are specified, this new operator can even leave parts of the
sensitive data in the log. The following example leaves the first four and the last four digits
of a credit card number in the log:

SecRule ARGS "@verifyCC \d{13,16}" \
"id:9000,phase:5,pass,capture,nolog,sanitiseMatchedBytes:4/4"

Warning

The sanitization actions work only for the data recorded in the audit log. However,
sensitive data could end up in the error log if it’s involved in a rule match, depend-
ing on the logging configuration of the rule. Likewise, sanitization doesn’t work
with XML and JSON request bodies.

Removing Sensitive Data from Audit Logs 67

Selective Audit Logging

Although full HTTP transaction logging sounds good in theory, in practice it’s very difficult
to use, because it slows down your server and requires large amounts of storage space. There
are ways to get some of the same benefits for a fraction of the cost by using partial logging
on demand.

The trick is to tie logging into the tracking of IP addresses, users, or sessions. By default,
you'll log only what’s relevant, but when you spot something suspicious coming from (for
example) an IP address, you can change your logging configuration to turn on full logging
for the offending IP address only.

To use this functionality, first you need to set up IP address tracking. You do this only once
for all your rules, so it should usually be part of your main configuration:

SecAction id:1000,phase:1,pass,nolog,initcol:ip=%{REMOTE_ADDR}

Now, you need to add a rule that will trigger logging when one of the rules in the ruleset
matches. We assume that all the rules in the ruleset assign a severity to their alerts. The
default value for HIGHEST SEVERITY is 255. Any value below 255 thus indicates that an
alert has occurred; in practice, you might choose one of the real severity values, matching
only on serious events. The following rule will start logging everything coming from an IP
address after such a single rule match; to achieve that, we set the flag ip.logflag for up to
one hour (3,600 seconds):

SecRule HIGHEST SEVERITY "@lt 4" \
id:9000,phase:5,pass,nolog,setvar:ip.logflag=1,expirevar:ip.logflag=3600

Finally, we add a rule that detects the flag and forces logging for all the requests from the
flagged IP address:

SecRule IP:logflag "@gt 0" \
id:9001,phase:5,pass,nolog,ctl:auditEngine=0n

Summary

This chapter, along with the two before it, covered the configuration of ModSecurity. You
learned how to install ModSecurity and how to configure it, with special attention given
to the logging facilities. Logging deserved its own chapter, because configuring a tool to
perform certain actions is often only half of the entire story, with the other half consisting
of tracking exactly what happened and why. Further, remote logging is a gateway to other
systems, which may assist you in managing ModSecurity.

The next three chapters discuss a new topic: rule writing. You'll first read an overview of
the entire rule language, followed by a tutorial in rule writing, and then a higher-level

68 Chapter 4: Logging

discussion of how to place ModSecurity configuration within Apache’s own directives.
Finally, the interesting bits are here!

Summary 69

9 Rule Language Overview

ModSecurity doesn’t do anything implicitly, which is why it has the rule language to enable
you to implement the inspection logic and policies exactly as you want them. The rule
language initially may appear very simple, but it's amazing how powerful and flexible it can
be.

This chapter gives an overview of all features of the rule language. In subsequent chapters,
you'll see these features in action. Theyre described in detail in the reference part of this
book.

Table 5.1. Rule language directives

Directive Description

SecAction Performs an unconditional action. This directive is a rule that always matches.
SecDefaultAction Specifies the default action list, which will be used in the rules that follow.
SecMarker Creates a marker that can be used in conjunction with the skipAfter action.
SecRemoteRules Loads rules from a remote server.

SecRule Creates a rule.

SecRuleInheritance Controls whether rules are inherited in a child configuration context.
SecRuleRemoveById Removes the rules with the given ID or ID range.

SecRuleRemoveByMsg Removes the rules for which their messages match the given regular expression.
SecRuleRemoveByTag Removes the rules for which their tags match the given regular expression.
SecRuleScript Creates a rule implemented using Lua.

SecRuleUpdateActionById
SecRuleUpdateTargetById
SecRuleUpdateTargetByMsg

SecRuleUpdateTargetByTag

SecWebAppId

Updates the action list of the rule with the given ID.
Updates the target list of the rules with the given ID or ID range.

Updates the target list of the rules for which their messages match the given
regular expression.

Updates the target list of the rules for which their tags match the given regular
expression.

Creates an application namespace that can be matched in rules.

71

The rule language is implemented using over a dozen directives, which are listed in Ta-
ble 5.1. The main directive to know is SecRule, which is used to create rules and thus does
most of the work. The remainder of this chapter documents the individual elements that
make the rules.

Anatomy of a Rule

Every rule defined by SecRule conforms to the same format, as follows:
SecRule VARIABLES OPERATOR [TRANSFORMATION FUNCTIONS] ACTIONS

You can see all four building blocks of the rule language on the list. The use of transforma-
tion functions is optional. Actions are mostly optional; only the id action is required, to give
each rule a unique identifier. So, what do those building blocks do? Here’s what:

Variables

Identify the parts of an HTTP transaction that a rule works with. ModSecurity will
extract information from every transaction and make it available through variables
for rules to use. The important thing to remember about variables is that they contain
raw bytes of data, meaning that they can contain special characters and bytes of any
value. They are not text. Your sites may restrict themselves to using only text in
parameters, but that doesn’t mean that your adversaries will. In fact, your adversaries
will use whatever helps them achieve their goals. A rule must specify one or more
variables.

Operators
Specify how a (transformed) variable is to be analyzed. Regular expressions are the
most popular choice, but ModSecurity supports many other operators, and you can
even write your own. Only one operator is allowed per rule.

Transformation functions
A rule can specify one or more transformation functions. The transformation func-
tions change input in some way before the rule operator is run. They are used
commonly to counter evasion, but they can also be used to decode data when
necessary.

Actions
Specify what should be done when a rule matches.

Note

Rules don't exist in isolation. In some cases, when a rule doesn’t explicitly specify a
value for a parameter, the default value is used; you'll learn about these situations
in Chapter 6, Rule Language Tutorial.

72 Chapter 5: Rule Language Overview

Variables

In ModSecurity, variables are used to identify the parts of an HTTP transaction that you
want to inspect. One of the main features of ModSecurity is that it preprocesses raw
transaction data and makes it easy for rules to focus on the logic of detection. There are over
100 variables in the most recent version of ModSecurity; they’re listed and described in this
section.

Scalar variables
Contain only one piece of information, which could be data or a number. For
example, REMOTE_ADDR always contains the IP address of the client.

Collections
Groups of regular variables. Some collections (e.g., ARGS) allow enumeration, making
it possible to use every member in a rule. Some other collections (e.g., ENV) aren’t as
flexible, but there is always some way to extract individual regular variables out of
them.

Read-only collections
Many collections point to some data that can't be modified, in which case the
collection itself will be available for reading only.

Read/write collections
When a collection isn’t based on immutable data, ModSecurity will allow you to
modify it. A good example of a read/write collection is TX, a collection that starts
empty and exists only as long as the currently processed transaction exists.

Special collections
Sometimes, a collection is just a handy mechanism to retrieve information from
something that isn’t organized as a collection but can seem like one. This is the
case with the XML collection, which takes an XPath expression as a (mandatory)
parameter and allows you to extract values out of an XML file.

Persistent collections
Some collections can be stored in ModSecurity’s internal database, where the data
can live beyond the life of the current transaction. This feature allows you to adopt
a wider view of your systems—for example, tracking access per IP address or per
session or per user account.

Request Variables

Request variables (Table 5.2) are those variables extracted from the request part of the trans-
action being inspected. The variables that describe the request line (request method, URI,
and protocol information) and the request headers are available from the very beginning,
but the complete information may not be available until phase 2 (request) begins.

Variables 73

Table 5.2. Request variables

Variable Description

ARGS Request parameters (read-only collection)
ARGS_COMBINED_SIZE Total size of all request parameters combined
ARGS_NAMES Request parameters’ names (read-only collection)
ARGS_GET Query string parameters (read-only collection)
ARGS_GET_NAMES Query string parameters’ names (read-only collection)
ARGS_POST Request body parameters (read-only collection)
ARGS_POST_NAMES Request body parameters’ names (read-only collection)
FILES Filenames as provided by client (read-only collection)

FILES COMBINED SIZE
FILES_NAMES

FILES STZES
FILES_TMPNAMES
FILES TMP_CONTENT
FULL_REQUEST
FULL_REQUEST_LENGTH
MULTIPART FILENAME
MULTIPART NAME
PATH_INFO
QUERY_STRING
REMOTE_USER

REQUEST BASENAME
REQUEST_BODY
REQUEST BODY_LENGTH
REQUEST COOKIES
REQUEST COOKIES_NAMES
REQUEST FILENAME
REQUEST HEADERS
REQUEST HEADERS_NAMES
REQUEST LINE
REQUEST METHOD
REQUEST PROTOCOL
REQUEST URT

REQUEST URT_RAW
STREAM_INPUT BODY

Combined size of all uploaded files

File parameter names (read-only collection)

File sizes (read-only collection)

Temporary filenames on server (read-only collection)
Content of all uploaded files (read-only collection)
Full request, including request line, headers, and body
Total size of full request

Last filename

Last file parameter name

Extra path information

Request query string

Remote user

Request URI basename

Request body

Total size of the request body

Request cookies (read-only collection)

Request cookies’ names (read-only collection)
Request URI filename/path

Request headers (read-only collection)

Request headers’ names (read-only collection)
Request line

Request method

Request protocol

Request URI, converted to exclude hostname
Request URI, as it was presented in the request
Raw request body

74

Chapter 5: Rule Language Overview

Server Variables

Server variables (Table 5.3) contain pieces of information that are available to the server but
still related to the ongoing transaction.

Table 5.3. Server variables

Variable

Description

AUTH_TYPE
REMOTE_ADDR
REMOTE_HOST
REMOTE_PORT
SCRIPT_BASENAME
SCRIPT_FILENAME
SCRIPT_GID
SCRIPT_GROUPNAME
SCRIPT_MODE
SCRIPT_UID
SCRIPT_USERNAME
SERVER_ADDR
SERVER_NAME
SERVER_PORT
USERAGENT IP

Authentication type
Remote address
Remote host
Remote port

Script basename
Script filename/path
Script group ID
Script group name
Script permissions
Script user ID
Script username
Server address
Server name
Server port

User agent address

Response Variables

Response variables (Table 5.4) are those variables extracted from the response part of the
transaction being inspected. Most response variables will be available in phase 3. The
response variable that is arguably the most important, RESPONSE_BODY, is available only in
phase 4 (response).

Table 5.4. Response variables

Variable Description

RESPONSE_BODY Response body

RESPONSE_CONTENT_LENGTH Response content length
RESPONSE_CONTENT_TYPE Response content type

RESPONSE_HEADERS Response headers (read-only collection)
RESPONSE_HEADERS_NAMES Response headers’ names (read-only collection)
RESPONSE_PROTOCOL Response protocol

Server Variables 75

Table 5.4. Response variables (continued)

Variable Description
RESPONSE_STATUS Response status code
STREAM_OUTPUT_BODY Raw response body

Miscellaneous Variables

Miscellaneous variables (Table 5.5) are exactly what they sound like: variables that don’t fit
into any other category.

Table 5.5. Miscellaneous variables

Variable Description

HIGHEST SEVERITY Highest severity encountered

INBOUND_DATA_ERROR Flag indicating request body couldn’t be buffered
OUTBOUND_DATA_ERROR Flag indicating response body couldn’t be buffered
MATCHED_VAR Contents of the last variable that matched

MATCHED_VAR_NAME Name of the last variable that matched

MATCHED_VARS Contents of all variables that matched in the most recent rule
MATCHED_VARS_NAMES Names of all variables that matched in the most recent rule
MODSEC_BUILD ModSecurity build version (e.g., 02090101)
SDBM_DELETE_ERROR Flag indicating problem with deleting entries in persistent storage
SESSIONID Session ID associated with current transaction

UNIQUE_ID Unique transaction ID generated by mod_unique_id

USERID User ID associated with current transaction

WEBAPPID Web application ID associated with current transaction
WEBSERVER_ERROR_LOG Error messages generated by Apache during current transaction

Parsing Flags

Parsing flags are used by ModSecurity to signal important parsing events. The idea behind
these flags is to avoid taking implicit action (e.g., blocking in response to an invalid request),
instead allowing the rules to decide what to do. See Table 5.6 for details.

Table 5.6. Request body parsing variables

Variable Description
MULTIPART BOUNDARY QUOTED Multipart parsing error: Quoted boundary encountered
MULTIPART BOUNDARY WHITESPACE Multipart parsing error: Whitespace in boundary

76 Chapter 5: Rule Language Overview

Table 5.6. Request body parsing variables (continued)

Variable

Description

MULTIPART CRLF_LF_LINES
MULTIPART DATA BEFORE
MULTIPART DATA AFTER

MULTIPART FILE_LIMIT EXCEEDED
MULTIPART HEADER_FOLDING
MULTIPART INVALID HEADER FOLDING
MULTIPART INVALID PART

MULTIPART INVALID QUOTING
MULTIPART LF_LINE

MULTIPART MISSING SEMICOLON
MULTIPART STRICT ERROR

MULTIPART UNMATCHED BOUNDARY
REQBODY ERROR

REQBODY_ERROR_MSG

REQBODY PROCESSOR
URLENCODED_ERROR

Multipart parsing error: Mixed line endings used

Multipart parsing error: Seen data before first boundary
Multipart parsing error: Seen data after last boundary
Multipart parsing error: Too many files

Multipart parsing error: Header folding used

Multipart parsing error: Invalid header folding

Multipart parsing error: Invalid part

Multipart parsing error: Invalid quoting

Multipart parsing error: LF line ending detected

Multipart parsing error: Missing semicolon before boundary
At least one multipart error other than unmatched boundary occurred
Multipart parsing error: Unmatched boundary detected
Request processor error flag

Request processor error message

Name of request processor that handled the request body
URL encoding error

Collections

Collections (Table 5.7) are special kinds of variables that can contain other variables. With
the exception of persistent storage collections, all collections are essentially one-offs—spe-

cial variables that give access to the information to which ModSecurity has access.

Table 5.7. Special collections

Variable Description

ENV Environment variables (read-only collection)

GEO Geo lookup information from the last @geoLookup invocation (read-only collection)
GLOBAL Global information storage, shared by all processes (read/write collection)
IP IP address data storage (read/write collection)

TX Transient transaction data (read/write collection)

RESOURCE Server resource data storage (read/write collection)

RULE Current rule metadata (read-only collection)

SESSION Session data storage (read/write collection)

USER User data storage (read/write collection)

XML XML DOM tree (read-only collection)

Collections

71

Time and Performance Variables

Time variables (Table 5.8) describe the moment when the current transaction began. The
performance variables contain information about internal timings during the transaction.
All performance timings are in microseconds.

Table 5.8. Time variables

Variable Description
DURATION Duration of transaction since its inception on the server
PERF_ALL String combining all performance variables
PERF_COMBINED Sum of all performance variables
PERF_GC Timing of garbage collection
PERF_LOGGING Timing of audit logging
PERF_PHASE1 Timing of ModSecurity phase 1
PERF_PHASE2 Timing of ModSecurity phase 2 (request)
PERF_PHASE3 Timing of ModSecurity phase 3
PERF_PHASE4 Timing of ModSecurity phase 4 (response)
PERF_PHASES5 Timing of ModSecurity phase 5 (Logging)
PERF_RULES List of slow rules (read-only collection)
PERF_SREAD Timing of reading from the persistent storage
PERF_SWRITE Timing of writing to the persistent storage
TIME Time (HH:MM:SS)
TIME_DAY Day of the month (1-31)
TIME_EPOCH Seconds since January 1, 1970 (e.g., 1473399025)
TIME_HOUR Hour of the day (0-23)
TIME_MIN Minute of the hour (0-59)
TIME_MON Month of the year (1-12)
TIME_SEC Second of the minute (0-59)
TIME_WDAY Day of the week (0-6)
TIME_YEAR Year

Operators

In ModSecurity, operators are invoked to inspect variables. Most rules will use regular
expressions for the inspection, but there will be cases in which other operators will be more
suitable. Numerical operators, for example, make it possible to compare numerical values,
which is difficult to achieve using regular expressions. Similarly, parallel matching, which
matches any number of phrases in parallel, achieves much better performance than regular
expressions.

78 Chapter 5: Rule Language Overview

There are four operator groups:
« String matching operators
« Numerical operators
« Validation operators

 Miscellaneous operators

We'll discuss these groups in the following subsections.

String Matching Operators

String matching operators (Table 5.9) all take a string on input and attempt to match it
to the provided parameter. The @rx and @pm operators are most commonly used, because
of their versatility (@rx) and speed (@pm), but the remaining operators are also useful—espe-
cially if you need variable expansion, which neither @rx nor @pm support, or in situations in
which performance really matters.

Table 5.9. String matching operators

Operator Description

@beginsWith Input begins with parameter

@contains Input contains parameter

@containsWord Input contains parameter as separate word
@endsWith Input ends with parameter

@rsub Manipulation of request and response bodies

@rx Regular expression pattern match in input

@pm Parallel pattern matching

@pmFromFile Parallel pattern matching, with patterns read from a file
@pmf Alias for pmFromFile

@streq Input equal to parameter

@strmatch Alternative to @contains using a different algorithm
@within Parameter contains input

Numerical Operators

Numerical operators (Table 5.10) make comparing numerical values easy (previously, you
had to resort to using complex regular expressions). Numerical operators support variable
expansion.

String Matching Operators 79

Table 5.10. Numerical operators

Operator Description

@eq Equal to

@ge Greater or equal to
@gt Greater than

@le Less than or equal to
@1t Less than

Validation Operators

Validation operators (Table 5.11) all validate input in some way.

Table 5.11. Validation operators

Operator Description

@validateByteRange Validates that parameter consists only of allowed byte values
@validateDTD Validates XML payload against a DTD

@validateHash Validates HMAC security tokens

@validateSchema Validates XML payload against a Schema
@validateUrlEncoding Validates an URL-encoded string

@validateUtf8Encoding

Validates an UTF-8-encoded string

Miscellaneous Operators

Finally, the miscellaneous category (Table 5.12) offers some useful functionality.

Table 5.12. Miscellaneous operators

Operator Description
@detectSQLi Checks for SQL injection attacks using libinjection library
@detectXSS Checks for cross-site scripting attacks using libinjection library
@fuzzyHash Checks if a file resembles some other known file in a precompiled database
@geoLookup Determines the physical location of an IP address
@gsbLookup Performs a check with Google's Safe Browsing project
@inspectFile Invokes an external script to inspect a file
@noMatch Performs a match that will never match (useful for performance testing)
@rbl Looks up the parameter against a real-time block list (RBL)
@unconditionalMatch Performs a match that will always match (useful for performance testing and to
transform variables)
80 Chapter 5: Rule Language Overview

Table 5.12. Miscellaneous operators (continued)

Operator Description
@verifyCC Checks whether the parameter is a valid credit card number
@verifyCPF Checks whether the parameter is a valid Brazilian social security number
@verifySSN Checks whether the parameter is a valid US social security number
@ipMatch Matches input against one or more IP addresses or network segments
@ipMatchFromFile Functions like @i pMatch, but with IP addresses read from a file
@ipMatchF Alias for ipMatchFromFile

Actions

Actions make ModSecurity tick. They make it possible to react to events and, more impor-
tantly, they’re the glue that holds everything else together and makes advanced features
possible. Theyre also the most overloaded element of the rule language. Because of the
constraints of the Apache configuration syntax, within the rule language that exists, actions
are used to carry everything other than variables and operators.

Actions can be sorted into seven categories:
1. Disruptive actions

2. Flow actions

3. Metadata actions

4. Variable actions

5. Logging actions

6. Special actions

7. Miscellaneous actions

We'll discuss each category in the following subsections.

Disruptive Actions

Disruptive actions (Table 5.13) specify what a rule wants to do on a match. Each rule must
be associated with exactly one disruptive action. The pass action is the only exception; it
will allow processing to continue when a match occurs. All other actions from this category
will block in some specific way.

Actions 81

Table 5.13. Disruptive actions

Action Description

allow Stop processing of one or more remaining phases

block Indicate that a rule wants to block

deny Block transaction with an error page

drop Close network connection

pass Do not block; go to the next rule

pause Pause for a period of time, then execute allow

proxy Proxy request to a backend web server

redirect Redirect request to some other web server
Flow Actions

Flow actions (Table 5.14) alter the way rules are processed within a phase.

Table 5.14. Flow actions

Action Description

chain Connect two or more rules into a single logical rule

skip Skip over one or more rules that follow

skipAfter Skip after the rule or marker with the provided rule ID or label

Metadata Actions

Metadata actions (Table 5.15) provide additional information about rules. The information
is meant to accompany the error messages to make it easier to understand why they

occurred.

Table 5.15. Metadata actions

Action Description
accuracy Accuracy or quality of the rule
id Assign unique ID to a rule
maturity Maturity level
msg Message string
phase Phase for a rule to run in
rev Revision number
severity Severity
tag Tag
82 Chapter 5: Rule Language Overview

Table 5.15. Metadata actions (continued)

Action

Description

ver

Version

Variable Actions

Variable actions (Table 5.16) address variables. They allow you to set, change, and remove

variables.

Table 5.16. Variable actions

Action Description

capture Capture results in one or more variables

deprecatevar Decrease numerical variable value over time

expirevar Remove variable after a time period

initcol Create a new persistent collection

setenv Set or remove an environment variable

setvar Set, remove, increment, or decrement a variable

setuid Associate current transaction with an application user ID (username)
setsid Associate current transaction with an application session ID

Logging Actions

Logging actions (Table 5.17) influence how logging is performed. The actions that influence
logging (auditlog, log, noauditlog, and nolog) only affect the rule in which they reside. To
control logging for the transaction as a whole, use the ctl action.

Table 5.17. Logging actions

Action Description

auditlog Log current transaction to audit log

log Log error message; implies auditlog

logdata Log supplied data as part of error message

noauditlog Don’t log current transaction to audit log

nolog Don't log error message; implies noauditlog
sanitiseArg Remove request parameter from audit log
sanitiseMatched Remove parameter in which a match occurred from audit log
sanitiseMatchedBytes Remove matched bytes from a regular expression match

sanitiseRequestHeader

Remove request header from audit log

Variable Actions

83

Table 5.17. Logging actions (continued)

Action

Description

sanitiseResponseHeader

Remove response header from audit log

Note
The

sanitization functions

also

exist

in American English variants:

sanitizeArg, sanitizeMatched, sanitizeMatchedBytes, sanitizeRequestHeader,
and sanitizeResponseHeader.

Special Actions

Special actions (Table 5.18) are gateways of a sort; they provide access to another class of
functionality. The ctl action has several subactions of its own and allows engine configura-
tion to be changed (but the changes only affect the ongoing transaction). The multiMatch
rule activates a special way of matching in which the rule operator is run after every
transformation (normally, the operator is run only once after all transformations). The t
action is used to specify zero or more transformations that will be applied to variables
before an operator is run; together, the transformations create a transformation pipeline.

Table 5.18. Special actions

Action Description
ctl Change configuration of current transaction
ctl:auditEngine Control audit logging engine
ctl:auditLogParts Control which parts are written to the audit log
ctl:debugloglevel Set debug log level
ctl:forceRequestBodyVariable Force creation of REQUEST_BODY for unknown content types
ctl:hashEnforcement Control the enforcement of the HMAC security token check
ctl:hashEngine Control the hash engine
ctl:requestBodyAccess Control request body buffering and processing
ctl:requestBodyLimit Limit request body size
ctl:requestBodyProcessor Activate a request body processor (e.g., XML and JSON)
ctl:responseBodyAccess Control response body buffering and processing
ctl:responseBodyLimit Limit response body size
ctl:ruleEngine Control rule engine
ctl:ruleRemoveById Remove rules by their ID
ctl:ruleRemoveByMsg Remove rules by their message using a regular expression
ctl:ruleRemoveByTag Remove rules by their tag using a regular expression

84 Chapter 5: Rule Language Overview

Table 5.18. Special actions (continued)

Action Description

ctl:ruleRemoveTargetById Remove a certain target from a rule or multiple rules identified by their ID

ctl:ruleRemoveTargetByMsg Remove a certain target from a rule or multiple rules identified by their message

ctl:ruleRemoveTargetByTag Remove a certain target from a rule or multiple rules identified by their tag

multiMatch

:base64Decode
:base64DecodeExt
:baseb4Encode
:cmdLine
:compressWhitespace
:cssDecode
:escapeSeqDecode
:hexDecode
thexEncode
:htmlEntityDecode
:jsDecode

:length
:lowercase

:md5

:none
:normalisePath
:normalisePathWin
:normalizePath
:normalizePathWin
:parityEven7bit
:parity0dd7bit
:parityZero7bit
:removeComments
:removeCommentsChar
:removeNulls
:removeWhitespace
:replaceComments
:replaceNulls

:shai

+ &+ + ~+ &+ &+ + + &+ &+ + + + + + 4+ 4+ + + 4+ 4+ + + 4+ &+ + + + + + o+

:sqlHexDecode

Activate multimatching, in which an operator runs after every transformation
Specify transformation functions to apply to variables before matching
Decode base64-encoded string

Decode base64-encoded string, ignoring invalid characters

Encode string into base64-encoding

Perform several transformations aimed at command execution attacks
Compress whitespace characters into a single space character

Decode CSS-encoded string

Decode ANSI C escape sequences

Decode hexadecimal string

Encode string into hexadecimal encoding

Decode HTML entity characters

Decode JavaScript escape sequences

Calculate the length of a variable string

Set lowercase

Calculate md5 hash

Flush transformation pipeline (i.e., remove all configured transformations)
Normalize path

Replace backslash characters with forward slash characters, then normalize path
Identical to t:normalisePath

Identical to t:normalisePathWin

Calculate even parity of seven-bit data

Calculate odd parity of seven-bit data

Calculate zero parity of seven-bit data

Remove various forms of comments

Remove characters used to create comments

Remove NUL bytes

Remove all whitespace characters

Replace C-style comments with a space character

Replace NUL bytes with space characters

Calculate SHA1 hash

Decode SQL-style hexadecimal encodings

Special Actions

85

Table 5.18. Special actions (continued)

Action Description

totrim Trim surrounding whitespace characters

t:trimLeft Trim whitespace characters from the beginning

t:trimRight Trim whitespace characters from the end

t:urlDecode Decode a percent-encoded input string

t:urlDecodeUni Decode a percent-encoded input string, including support for the %uHHHH form
t:urlEncode Encode into percent-encoded string

t:utf8toUnicode Transform UTF-8 characters to Unicode

Miscellaneous Actions

The miscellaneous actions (Table 5.19) group contains actions that don't belong in any of the
other groups.

Table 5.19. Miscellaneous actions

Action Description

append Append content to response body

exec Execute external script

prepend Prepend content to response body

status Specify response status code to use with deny and redirect

xmlns Specify namespace for use with XPath expressions
Summary

This chapter provided a complete overview of the rule language. I like to think of this
chapter as a map of ModSecurity features: as with a real map, whenever you need to do
something in ModSecurity, you can return here to discover whether it’s possible and how it
can be done. For the details, though, visit one of the subsequent chapters or the reference
part of the book.

The next chapter focuses on rule writing, and it’s going to be the most interesting chapter
you've seen so far. I'd like to think that were setting a trend, with every new chapter being
more interesting than the one before it.

86 Chapter 5: Rule Language Overview

b Rule Language Tutorial

Now that you have a basic understanding of what ModSecurity rules look like, let's walk
through some examples that demonstrate the most commonly used functionality.

Introducing Rules

The simplest possible rule will specify only a variable and a regular expression. In the
example that follows, we define a rule with ID 2000 and look at the request URI, trying to
match the regular expression pattern <script> against it:

SecRule REQUEST URI <script> id:2000

This simple rule takes advantage of the fact that ModSecurity allows a rule to not specify an
operator, in which case it assumes the regular expression operator. This feature is a leftover
from ModSecurity 1.x, which supported only regular expressions; there were no operators at
all. If you want to, you can always explicitly specify the operator. I usually do. The previous
rule is functionally identical to this one:

SecRule REQUEST URI "@rx <script>" id:2000

Note how I've had to use double quotes because the second parameter now contains a space.

ModSecurity supports a number of operators. Some often are similar, but have different
performance characteristics. For example, the regular expression pattern I used for the
example (<script>) isn't much of a pattern. It’s just a string, because it doesn’t contain
any special characters. I might just as well have written the same rule using the @contains
operator:

SecRule REQUEST URI "@contains <script>" id:2000

By now, you've probably realized that the operators are very straightforward: they take a
piece of transaction data and analyze it, most commonly by comparing it to some other
value that you provided in the same rule.

87

Working with Variables

You can specify as many variables as you want in a rule, as long as you separate them using
the pipe character:

SecRule REQUEST FILENAME|QUERY_STRING "@rx <script>" id:2000

Some variables, which we call collections, potentially contain more than one piece of infor-
mation. This is the case with the ARGS variable, for example, which contains all request
parameters in a transaction. You use the colon operator to specify only one member of a
collection, as in the following rule, which looks only at the parameter named p:

SecRule ARGS:p "@rx <script>" id:2000
You can use the same collection more than once within the same rule, if you want to do so:
SecRule ARGS:p|ARGS:q "@rx <script>" id:2000

The colon operator is quite potent and allows you to use a regular expression to specify
names, which is helpful when parameter names change at runtime. The following rule will
target all parameters with names that begin with the letter p, catching parameters such as
password or pea:

SecRule ARGS:/*p/ "@rx <script>" id:2000

Warning

As always with regular expressions, be sure to use the » and $ anchors when you
intend to match complete request parameter names. There’s also a limitation in
this case, because not all characters are allowed; it’s not currently possible to use
the pipe character, which you might want to use to construct a logical OR (e.g.,
ARGS:/*(p|q)/ doesn’t work).

When you don't restrict a rule to only certain members of a collection, ModSecurity will
assume that you want to use all members, which is quite handy when you don’t know what
parameters a page uses. Not all collections can be used in this way (e.g., ARGS can, but ENV
cannot), but when they can, a reference to such a collection will be expanded into individual
variables just before a rule is run. You can observe how this works in the debug log. For
example, for a request that has the parameters p, q, and z, ARGS expands as follows:

[4] Expanded "ARGS" to "ARGS:p|ARGS:q|ARGS:z".

Now that you know how expansion works, parameter exclusion will make sense: to remove
a parameter from a rule, just put an exclamation point before it. The following rule will look
at all request parameters except the one named z:

88 Chapter 6: Rule Language Tutorial

SecRule ARGS|!ARGS:z "@rx <script>" id:2000

Combining Rules into Chains

When you specify more than one variable in a rule, you effectively combine the variables
using the OR logical operator. The rule will match if any of the variables match. It’s also
possible to use a logical AND, whereby you combine several rules into one. Let’s say that
you want to write a rule that matches when something is found in both the parameter p and
the parameter q. You write the following:

SecRule ARGS:p "@rx <script>" id:2000,chain
SecRule ARGS:q "@rx <script>"

This is called rule chaining. The chain action constructs a chain of two or more rules and
effectively creates a single rule with more than one evaluation step. The first rule in a chain
will always run, but the subsequent rules will run only if all the previous rules (in the same
chain) ran. Whenever a rule that belongs to a chain doesn't match, the execution continues
with the first rule that isn’t part of that chain.

Note

I've made it a habit to indent chained rules for better readability. That way, it’s
immediately clear that a rule is linked to the previous one, even if a longer list of
actions hides the chain keyword.

Rule chains are usually easy to understand and use. However, there’s a complication when
rules match against more than one parameter (e.g., ARGS). In such a case, the rule will run
against all possible values, firing actions on every match, before proceeding to the next rule
in the chain. This means that by the time the second rule in the chain is executed, the first
match with the captured variables may already be overwritten by additional matches. This
usually isn’t a problem, but it can be when constructing advanced rules.

Operator Negation

Operator results can be negated by placing an exclamation point right before the operator.
For example, if you wanted to write a rule that matches on a username that is neither admin
nor root (the opposite of the intent in the previous example), then youd write the following:

SecRule ARGS:username "!@rx “(admin|root)$" id:2000

Operator negation shouldn’t be confused with rule negation. The two are the same only
when a rule is used against only one variable; the situation changes when there are more.
Observe the following rule:

Combining Rules into Chains 89

SecRule ARGS:p|ARGS:q "!@eq 5" id:2000

This rule will match if any one parameter doesn't equal 5. If you want to write a rule that
matches when both parameters do not equal 5, you'll have to use rule chaining, as follows:

SecRule ARGS:p "!@eq 5" id:2000,chain
SecRule ARGS:q "!@eq 5"

Variable Counting

Heres a question: how do you detect something that isn't there? Take, for example, the
common rule that addresses all parameters in a request:

SecRule ARGS "@rx <script>" id:2000

In a request without any parameters, ARGS will expand to zero variables. Without any
variables to work with, any operator will fail and the rule (or a chain) will not match. You
might argue that this is fine, but let’s assume that you want to make a parameter mandatory;
writing a rule that checks for an empty value won’t exactly work as desired.

The solution is to use ModSecurity’s ability to count how many variables there are in a
collection. With the help of the ampersand modifier, we can look into ARGS and detect a case
in which there are no parameters:

SecRule &ARGS "@eq 0" id:2000

The ampersand operator can be applied to any collection, including a partial one. The
following rule will match whenever it sees a request with more than one parameter named
username:

SecRule &ARGS:username "@gt 1" id:2000

Using Actions

So far, most of the examples in this tutorial have used only the mandatory id action. I chose
to focus initially only on the mechanics of detection, without worrying about anything else.
However, it’s practically impossible to write a rule without specifying any additional actions.

Actions are placed in the third parameter of SecRule and the first parameter of SecAction.
Because the id action is mandatory, a rule can have one or more actions. If there’s more
than one action, the actions are separated with commas and any number of whitespace
characters in between. The following rule specifies three actions:

SecRule ARGS "@rx K1" id:2000,deny,log

90 Chapter 6: Rule Language Tutorial

Some actions have parameters, in which case you must place a colon after the action name
and follow with the parameter. To deny with status 404, you could use the following:

SecRule ARGS "@rx K1" id:2000,deny,log,status:404

Finally, if you want to supply a parameter that uses whitespace or contains a comma,
enclose the value in single quotes. This method of parameter handling is needed often with
messages:

SecRule ARGS "@rx K1" "id:2000,deny,log,msg:'Acme attack detected'"

In addition to using single quotes around the parameter for the msg action, I enclosed the
entire third directive parameter in double quotes. This is needed for Apache to correctly
parse the directive line whenever there’s whitespace in the directive parameters. Later,
you’ll see that some actions take complex parameters (e.g., ctl and setvar), but the syntax
discussed here applies to them as well.

Understanding Action Defaults

You now know how to specify rule actions—but what would happen if you didn't? Mod-
Security has a default action list. Whenever a new rule is added to the configuration,
the action list of the rule is merged with the default action list. The default action list
is currently phase:2,pass,log,auditlog, but you can override that at any time using the
SecDefaultAction directive.

In the simplest case, when the rule being added has no action outside of id, the default
action list is used instead. Take the following rule (and assume there are no other rules or
defaults in the configuration):

SecRule ARGS "@rx Ki" id:2000
After the default action list is taken into consideration, the previous rule looks like this:
SecRule ARGS "@rx K1" id:2000,phase:2,pass,log,auditlog

In general, when a rule has one or more actions, merging means one of two things:

The rule action replaces an action in the default action list
This will typically happen with disruptive actions, of which there can only be one per
rule. If there’s a disruptive action specified in both the default actions list and the rule,
the one in the rule will prevail.

The rule action is appended to the ones in the default action list
Some actions can appear more than once in an action list. This is the case with many
nondisruptive actions, such as t, setvar, ctl, and so on. In some cases, it’s possible
for the rule actions to completely remove the default actions, but how thats done

Understanding Action Defaults 91

depends on the action in question. With the transformation action, for example,
using t:none clears the list of transformations and starts over.

The idea with SecDefaultAction was to make the job of rule writing easier by allowing you
to specify the commonly used actions only once. For example, you could write something
like this:

SecDefaultAction phase:2,log,deny,status:404
SecRule ARGS "@rx K1" id:2000
SecRule ARGS "@rx K2" id:2001

SecRule ARGS "@rx K99" id:2098

This approach works well when you’re in complete control of your configuration, but it
complicates things, because the rules are no longer self-contained. The rules are perhaps
easier to write initially, but at the price of being more difficult to understand when you
come back to them in a couple of months. Furthermore, there’s always a danger that there
will be unforeseen interaction between the defaults and the rule. For example, suppose that
you write a rule that relies on certain default values, but then you later change the defaults
without realizing how you're affecting the rules.

This is particularly true if you place any transformation functions in the default list:
SecDefaultAction phase:2,log,pass,t:lowercase
SecRule ARGS "@rx K1" t:urlDecode id:2000

For this reason, it’s never a good idea to use transformation functions in SecDefaultAction.
In fact, such usage is officially deprecated.

Note

You should always write rules to specify the complete list of transformation func-
tions that they depend on. To achieve this, always specify t:none as the first
transformation function, which will reset the transformation pipeline.

Another peculiarity with the SecDefaultAction directive is that it can be used more than
once. Every time you use it, the default action list is changed—for example:

First we have some rules that only warn
SecDefaultAction phase:2,log,pass
SecRule ARGS "@rx W1" id:2000

SecRule ARGS "@rx W2" id:2001

SecRule ARGS "@rx W19" id:2018

Now we have some rules that block

92 Chapter 6: Rule Language Tutorial

SecDefaultAction phase:2,log,deny,status:500
SecRule ARGS "@rx B1" id:2100

SecRule ARGS "@rx B89" id:2188

The bottom line is that even though SecDefaultAction is powerful and allows you to specify
any action, you should use it only to specify the default blocking method. Anything other
than that is asking for trouble! Because of this, and because of some other issues that occur
whenever SecDefaultAction is used in configuration with multiple contexts (which will
be explained in the section called “SecDefaultAction Inheritance Anomaly” in Chapter 7),
there’s a good probability that SecDefaultAction will be deprecated and replaced with a
safer mechanism in the future.

Before we leave SecDefaultAction, Id like to highlight another use case it supports. If
you combine multiple applications on a single server or you centralize the log files of
multiple services, then it helps to tell the alerts apart if you add a default tag to individual
services containing the application name. A security operations center (SOC) can get alerts
from hundreds of ModSecurity sensors, and providing a link to the documentation of the
individual services together with the alert can be very helpful:

Add default tags to all alerts for service "Production dashboard"
SecDefaultAction "phase:2,pass,log,auditlog,\

tag: 'Production dashboard',\

tag: 'https://docs.example.org/services/dashboard""

Actions in Chained Rules

Special rules apply to the placement of actions in chained rules. Because several chained
rules form a single complex rule, there can only be one disruptive action for the entire
chain. Similarly, there can only be one set of metadata rules. By convention, the disruptive
action and the metadata actions are placed with the first rule in a chain:

SecRule ARGS "@rx K1" id:2000,deny,log,chain
SecRule ARGS "@rx K2"

That example looks innocent enough, but trouble begins once you start to write complex
chained rules (as most are), when you will have to mix nondisruptive actions with the
disruptive ones—for example:

SecRule ARGS "@rx Ki" id:2000,deny,log,setvar:TX.score=+1,chain
SecRule ARGS "@rx K2" setvar:TX.score=+1

Although disruptive actions require special treatment when used in rule chains, most other
actions don't. This means that a nondisruptive action associated with a rule executes as soon
as the rule matches, even when the rule is a part of a chain. Disruptive actions, on the other

Actions in Chained Rules 93

hand, execute at the end, when the last rule in the chain matches. The flow control actions
(e.g., skipAfter) and msg share this trait.

In hindsight, the last rule in a chain is a much better location for the disruptive and
metadata rules, but it’s too late to change at this point.

Unconditional Rules

The actions that you specify in SecRule execute when a match occurs, but you can use
the SecAction directive to do something unconditionally. This directive accepts only one
parameter, which is identical to the third parameter of SecRule, and it’s a list of actions that
you want to be executed:

SecAction id:2000,pass,nolog,setvar:TX.counter=10

The SecAction directive is useful in the following cases:

« To initialize one or more variables before the rules that use them are processed
« To initialize a persistent collection, most often using a client’s IP address

o In combination with skip, to implement an if-then-else construct (described later in
this chapter)

Using Transformation Functions

You already know that rules typically work by taking some data determined by a variable
name and applying an operator to it. However, direct matching like that happens only in
the simplest case. In general, the data processed by a rule will be transformed by one or
more transformation functions before it’s fed to an operator. The transformation functions
are often referred to as a transformation pipeline.

Take the following rule, for example, which transforms input by converting all characters
into lowercase, then compressing multiple consecutive whitespace characters:

SecRule ARGS "@contains delete from" \
id:2000,phase:2,block,t:1lowercase,t:compressWhitespace

As aresult, the rule will match all the following forms of input:

delete from
DELETE FROM
delLeTe fRoM
Delete From

Note

It’s a good practice always to begin the list of transformation functions with t:none,
which clears the transformation pipeline to start from scratch. If you don't do that,

94 Chapter 6: Rule Language Tutorial

then you—as a rule writer—can never be completely sure that your user didn’t
specify a transformation function in his or her SecDefaultAction directive (on
purpose or by mistake), in which case your rule will probably malfunction. Using
t:none ensures that your rules use only the transformation actions you specified.

There are several reasons you might want to apply operators to something other than the
original variable values:

« Your input isn't available in a form that’s useful to you. For example, it might be
base64-encoded, in which case you won’t be able to do anything useful with it. By
applying the transformation function that decodes base64 data (t:base64Decode), you
open up the data for inspection.

« Similarly, you may need a piece of data in some other form. If you have some binary
data that you need to record in a user-friendly manner, you’ll probably encode it as hex
characters using t:hexEncode.

« Sometimes rules are difficult or impossible to write in order to deal with input in
its original form. Take, for example, case sensitivity. Most ModSecurity operators are
case-sensitive, but there are many occasions when case doesn’t matter. If you attempt to
match a nontrivial string using a case-sensitive matching function, you’ll soon discover
that you need to write either a number of rules (each with a different combination of
lowercase and uppercase letters) or a rule with a very ugly and difficult to decipher
regular expression. You can address this particular problem by transforming input into
lowercase characters before matching.

« In the majority of cases, you'll use transformation functions to counter evasion. Eva-
sion is a technique often used by attackers to bypass existing detection and protection
mechanisms. Attackers will take advantage of the specific context in which attack
payload data is processed to modify it in such a way that it can evade detection but
remain effective.

Note

If youre protecting a service that you don't know well, its hard to determine
whether you should apply anti-evasion transformations. If you apply a transforma-
tion like t:base64Decode when there’s no evasion attempt, then you transform
the text into an unreadable string and ModSecurity is no longer able to detect
a possible attack. Of course, if you don't apply a transformation when one’s need-
ed, then some attacks might not be detected. To solve this dilemma, there’s the
multiMatch action, which applies the operator many times within the same rule.
The operator runs before the first transformation function and then again after
every transformation that’s carried out in the same rule.

Using Transformation Functions 95

Blocking

Regardless of whether you use actions, every ModSecurity rule is always associated with one
(and only one) disruptive action. Disruptive actions are those that interrupt rule processing
within a phase. A disruptive action can do one of three things:

Continue with the next rule
This is a special case of a disruptive action that doesn’t disrupt. Use the pass action
whenever you want to only warn about a potential issue or when you want to
have a rule that changes something else in the transaction or persistent state (e.g.,
increments a counter).

Stop processing phase but continue with transaction
The allow action is used for whitelisting. It allows transactions to proceed without
further inspection. Depending on how you use allow, you may choose to skip just
the current phase, the request inspection phases (phases 1 and 2), or all remaining
inspection phases (the logging phase always runs). Skipping rules is used so often
that the section called “Whitelisting” in Chapter 9 is dedicated to the topic.

Stop processing phase and block transaction

Blocking is a last-resort measure you can undertake to protect your web applications
and to turn away undesirable clients (e.g., worms, bots, and the like). The best way
for a rule to block is by using the block action, which indicates blocking but doesn't
state how it’s to be done. Another advantage of block is that it can be overridden by
the rule administrator. If you use any other blocking actions (deny, drop, redirect, or
proxy), youre essentially hard-coding policy in rules. That may be all right if youre
writing one-off rules for yourself, but be warned that for others to use your rules,
they’ll probably have to change them to suit their circumstances.

If youd like to read more about blocking, head to the section called “Advanced Blocking” in
Chapter 9, which covers the topic in detail.

Changing Rule Flow

The assumption with ModSecurity rules is that they’ll be processed one by one, starting
with the first rule in a phase and ending with the last. If a match occurs somewhere in the
phase and blocking takes place, phase processing will stop, but the execution of the rules
is still linear. However, there is only so much you can achieve by executing rules in that
fashion. Sometimes you’ll want to form rule groups and create if-then-else constructs, and
for that you'll need actions that change the way rules flow.

The best way to design a desired flow is to use a combination of the SecMarker directive and
the skipAfteraction. In the following example, we inspect the p and q parameters only if the
admin parameter is also part of the request:

96 Chapter 6: Rule Language Tutorial

SecRule &ARGS:admin "@®eq 0" "id:2000,pass,nolog,skipAfter:END_ADMIN"
SecRule ARGS:p "@rx K1" "id:2001,block,log"

SecRule ARGS:q "@rx K2" "id:2002,block,log"

SecMarker END_ADMIN

When you use skipAfter and the rule matches, ModSecurity will examine all the subse-
quent rules to find the one with the specified marker. Once found, rule execution will
continue with the rule immediately after.

Historically, the first skipping action supported by ModSecurity was skip, which takes one
parameter and skips over as many rules as you specify. The following example demonstrates
skip:

SecRule ARGS "@rx K1" id:2000,pass,nolog,skip:2
SecRule ARGS "@rx K2" id:2001,pass,nolog
SecRule ARGS "@rx K3" id:2002,block,log

In this example, when rule 1 matches, ModSecurity will skip the next two rules.
Keep the following points in mind:

o When you form a chain of two or more individual rules, the entire chain counts as one
rule for the sake of skipping with the skip action.

 You can use skip in a chain, but the same rules as for the disruptive actions apply: only
one skip is allowed and it has to be placed within the chain starter rule.

o The skip action works only within the same phase as the rule that initiated it. As far as
ModSecurity is concerned, the rules in other phases simply do not exist.

Skipping is often used as an optimization technique. Sometimes, executing a group of rules
makes sense only under a specific condition; executing them otherwise is a waste of CPU
power. In such cases, you'll typically precede the group with a single rule that tests for the
condition and jumps over the entire group of rules if the condition is not true. This is the
use case for the previous skipAfter example.

If-Then-Else

You can implement an if-then-else construct with the skipAfter action we just introduced:

SecMarker IF
SecRule &ARGS:admin "@gt 0" "id:2000,pass,nolog,skipAfter:ELSE"
SecMarker THEN

SecRule ARGS:p "@rx K1" "id:2001,block,log"

SecRule ARGS:q "@rx K2" "id:2002,block,log"

SecAction "id:2003,pass,nolog,skipAfter:END"
SecMarker ELSE

SecRule ARGS:p "@rx K3" "id:2003,block,log"

[f-Then-Else 97

SecRule ARGS:q "@rx K4" "id:2004,block,log"
SecMarker END

Technically, you don't need the first two SecMarker directives in this example, but they make
for a more readable ruleset.

Controlling Logging

There are several logging actions that a rule can use, and they fall into two groups. (As a
reminder, you can find the list of all logging rules in Table 5.17.) The first group consists
of the actions that influence only what happens during the processing of the current
rule; such actions are used in virtually every rule, and I cover them in this section. The
actions in the second group influence how logging is performed on a transaction level,
and they’re normally only used in configuration rules. I won't cover the second group here,
because the common use cases are already covered in the section called “Advanced Logging
Configuration” in Chapter 4.

Going back to the first group, the most common usage is as follows:
SecRule ARGS "@rx Ki" id:2000,block,log,auditlog

If the rule matches, the log and auditlog actions tell the engine to emit an alert and log the
transaction to the audit log, respectively. I'll let you in on a secret: the log action implies
auditlog, so it’s always safe to use only the first. (The same is true for the actions that ask
for no logging: nolog, the opposite of log, implies noauditlog, which is the opposite of
auditlog.) There are two points to consider:

1. Analert is a record of a rule match that will appear in the debug log, in Apache’s error
log, and in the H section of an audit log entry. Because there are two pairs of actions
(log and nolog, and auditlog and noauditlog), you can decide exactly what happens,
logging-wise, when a rule matches. Most rules will want both logs, but you can log a
match to the error log only and not have an audit log entry at all (which you achieve
with log,noauditlog).

2. When a rule specifies auditlog, that doesn’t mean an audit log will be created. You
should think about audit log as asking for a transaction to be recorded, but a detection
rule won’t normally have full control over what will actually happen. ModSecurity
classifies transactions as relevant or not relevant. When a rule matches and it speci-
fies auditlog (either explicitly, or implicitly through log without noauditlog), then
ModSecurity will set the relevancy flag. This will normally cause the transaction to
be recorded, but, as you saw in the section called “Advanced Logging Configuration”
earlier, a subsequent rule can override that decision. This separation of concerns is

98 Chapter 6: Rule Language Tutorial

intentional. Rules should only indicate what they want to achieve; the administrator
should have the final say.

Capturing Data

The TX collection has 10 variables with names that are just digits from 0 to 9. Those variables
are reserved for substring data capture, which is primarily a feature of the @rx operator. To
make use of this feature, you have to do two things:

1. Use capturing parentheses within regular expression patterns to specify where capture
should take place

2. Add the capture action to the rule in which you want data capture to take place

As an example, suppose you're dealing with a web application that places session identifiers
in the request line. In order to support session state, you want to extract the session infor-
mation and initialize a parallel session in ModSecurity. The URI used in the application and
containing a session identifier could look like this:

https://www.example.com/69d032331009e7b0/index. html
Your rule to extract the session identifier will use a regular expression data capture:

Initialize session state from the session identifier in URI

Example REQUEST URI value: /69d032331009e7b0/index.html

SecRule REQUEST URI "@rx ~/([0-9a-fA-F]{16})/" \
"id:1000,phase:1,pass,capture,nolog,setsid:%{TX.1}"

Note

Although the previous example neatly demonstrates the data capture mechanism,
that one rule alone isn't enough for a robust implementation of session manage-
ment. For complete coverage, refer to the section called “Session Management” in
Chapter 8.

Here’s what happens on a successful match:

[4] Recipe: Invoking rule ecbc90o; [file "/usr/local/modsecurity/etce
/rules.conf"] [line "132"] [id "1000"].

[5] Rule ecbc90: SecRule "REQUEST URI" "@rx ~/([0-9a-fA-f]{16})/" <
"phase:1,1d:1000,pass,capture,nolog,setsid:%{TX.1}"

[4] Transformation completed in 1 usec.

[4] Executing operator "rx" with param "~/([0-9a-fA-f]{16})/" against REQUEST URI.
[9] Target value: "/69d032331009e7b0/index.html"

[9] Added regex subexpression to TX.0: /69d032331009e7b0/

[9] Added regex subexpression to TX.1: 69d032331009e7b0

[4] Operator completed in 75 usec.

Capturing Data 99

The TX.0 variable will always contain the entire part of the input that was matched (/
69d032331009e7b0/ in the example; note the forward slashes at the beginning and the end of
the value). If your regular expression uses the * and $ anchors, TX.0 will contain the entire
input. In the example, I used only one of the anchors, so TX.0 contains the data from the
beginning of input, but only until the end of the matching part (the second forward slash).
The TX.1 variable will contain just the part that was enclosed in the first parentheses set
that appeared in the pattern. The TX.2 variable will draw its contents from the second set of
parentheses, and so on. Up to nine captures will be created.

Note

If there is no match, the data capture variables won't be changed. However, if there
is a match, the unused data capture variables will be unset.

The @m and @pmFromFile operators have limited support for data capture: if the capture
action is specified, the TX.0 variable will be populated with the input data matched. There’s
no need to use parentheses in the patterns anywhere.

Variabhle Manipulation

Although most of the data you’ll be dealing with will be read-only, generated by Apache and
ModSecurity as they parse transaction data, there are certain variables and collections that
you're allowed to change. The TX collection is a private, per-transaction space that rules can
use to collaborate. The variables placed in TX can be retrieved using the same approach as
for other collections. The setvar action, however, allows the values to be changed.

To create a new variable, simply set its value to something:
SecAction id:2000,pass,nolog,setvar:TX.score=1

To delete a variable, place an exclamation point before the name:
SecAction id:2000,pass,nolog,setvar:!TX.score

Numerical values can be incremented or decremented. The following example first incre-
ments a variable by 2 then decrements it by 1:

SecAction id:2000,pass,nolog,setvar:TX.score=+2
SecAction id:2001,pass,nolog,setvar:TX.score=-1

Although collaboration within the same transaction is interesting and useful, variable ma-
nipulation becomes more exciting when combined with the persistent storage functionality
and the expirevar and deprecatevar actions (covered in Chapter 8, Persistent Storage).

100 Chapter 6: Rule Language Tutorial

Variable Expansion

In many text contexts, ModSecurity supports a feature known as variable expansion. The
reference manual refers to it as macro expansion, but I think that’s rather ambitious, at least
at this time. Variable expansion enables you to output data into text, which can be useful.
You may recall that I used variable expansion in the system rules in the section called
“Handling Processing Errors” in Chapter 3:

SecRule REQBODY PROCESSOR ERROR "!@eq 0" \
"1d:2000,phase:2,block,log,t:none,msg: 'Failed to parse request body:
%{REQBODY_PROCESSOR_ERROR_MSG}'"

The idea is that when a fault occurs during request body parsing, you can see what
the actual error was. Variable expansion takes place whenever ModSecurity encounters
a variable name enclosed in %{...}, which is a syntax that ModSecurity adopted from
mod_rewrite. The variable name can be anything, and you can access collections using the
familiar %{COLNAME.VARNAME} syntax.

Note

The difference between COLNAME:VARNAME and COLNAME.VARNAME is that the former
potentially returns more than one result, whereas the latter will always return only
one result (or no result at all).

Most parts of the rule language support variable expansion; many features actually require
it. For example, session or IP address tracking would be impossible without the ability to
somehow handle a piece of data received from a client. Having said that, don’t be surprised
if you encounter a part of the rule language that doesn’t support this feature. If that happens,
youre advised to report the problem to the issue tracker. Initially, the support for this
feature was added only where it was needed. By popular demand, the support expanded
over time, but there may still be areas in which variable expansion does not work.

Here’s an interesting example that uses variable expansion, in which one piece of a request is
compared to another one from the same request:

If an absolute URI (containing hostname) was given on the request
line, check that the same hostname is used in the Host header
SecRule REQUEST URI RAW "@beginsWith https" "id:2000,phase:2,block,\
msg: 'Hostname mismatch',chain”
SecRule REQUEST URI_RAW "!@beginsWith https://%{REQUEST_HEADERS.Host}"

There’s a performance penalty when using variable expansion with regular expression and
parallel matching operators. Both @rx and @pm split their work into two steps. They do as
much work as possible up front, compiling patterns into more efficient internal representa-
tions. Then, in the second step, they perform matching. Compilation of patterns usually

Variable Expansion 101

is performed only once, at configure-time, thus profiting from static patterns. However, if
variable expansion is being used, the regular expression pattern will be compiled every time
the rule is executed, which can be costly.

Recording Data in Alerts

The one remaining log action we've yet to discuss is logdata, the purpose of which is to take
a piece of data you specify and include it along with other alert information.

Consider the following rule, which looks for JavaScript event handlers in input:

SecRule ARGS "@rx \bon(abort|blur|change|click|dblclick|dragdrop|end|error|\

focus | keydown | keypress | keyup | load |mousedown | mousemove | mouseout |mouseover |\

mouseup |move | readystatechange |reset|resize|select|submit|unload)\

\b\W*?2=""\
id:2000,phase:2,deny,capture,t:none,t:lowercase,log,logdata: %{TX.0}

This rule may seem a bit intimidating at first glance, although it’s conceptually simple. If you
read the regular expression pattern carefully, you'll see that all the patterns we're looking for
share the beginning, have a part in the middle that’s different, and share the end—so it’s not
that difficult after all. However, consider the following points:

o Alert messages don’t display input data by default. Thus, looking at an alert message
alone, you won't be able to tell which part of the pattern matched; you’ll have to seek
access to the entire audit log. Even when it’s possible to understand it, it will still be
time-consuming.

« Even with access to the audit log, tracking down the part of the input that matched
may not be simple. When this sort of rule matches, it typically happens with request
parameters that are quite long. Thus, you need to first understand what the rule
does and then effectively perform manual pattern matching by reading through every
parameter.

« Matching takes place against potentially transformed input, so often the raw input
won't contain the data in the form used for matching.

These problems are resolved when you use the logdata action. Examine the following alert
(focusing on the emphasized part):

ModSecurity: Access denied with code 403 (phase 2). Pattern match «

"\\\\bon(abort |blur|change|click|dblclick|dragdrop|end|error|focus|keydown|keypress«
| keyup | Load | mousedown | mousemove | mouseoutmouseover |mouseup |move | readystatechange|res«
et|resize|select|submit|unload)\\\\b\\\\W*?=" at ARGS:a. [file "/usr/locale
/modsecurity/etc/rules.conf"] [line "135"] [id "2000"] [data "onblur=alert('attack'e
)"] [hostname "localhost"] [uri "/"] [unique id "V61faX8AAQEAAGFLGMEAAAAE"]

The capture action from the rule told the regular expression operator (@rx) to place the
entire matching area into the TX.0 variable. The logdata:%{TX.0} part of the rule told the

102 Chapter 6: Rule Language Tutorial

engine to include the value of the TX.0 variable in the alert. The end result is that you now
know, at a glance, exactly what matched.

Note

At this point, you may ask why we have logdata when its perfectly possible to
use variable expansion in the msg action. There’s only one reason: when you set
a piece of data as part of a message, a program parsing it won't know where the
data starts. To a computer, the entire message is just some text. However, if you
include the same data in an alert with logdata, the same parser will know that it’s
something that originated in input, and it can do something useful with it. It could,
for example, highlight the piece of data on the alert page.

Adding Metadata

Although some rules are simple and don’t require much thought to understand, many aren't.
Also, even when the rule itself is simple, that doesn’t mean that it will be easy to understand
what it does and why it does it. ModSecurity generally tries to add as much metadata to
alerts as possible. Consider the following rule, which gets the job done:

SecRule REQUEST METHOD "!@rx ~(GET|HEAD)$" \
id:1000,phase:1,block,t:none,log

This rule restricts request methods to either GET or HEAD, which is suitable only for a static
web site. The rule will, on a match, produce the following alert:

[2016-08-09 06:53:06.787899] [-:error] 127.0.0.1:49751 V61hsn8AAQEAAGENOLKAAAAC
[client 127.0.0.1] ModSecurity: Warning. Match of "rx ~(GET|HEAD)$" against <
"REQUEST _METHOD" required. [file "/usr/local/modsecurity/etc/rules.conf"] [line «
"133"] [id "1000"] [hostname "localhost"] [uri "/"] [unique_id "V61hsn8AAQEAAGtNO1ke
AAAAC"]

Alert messages contain quite a lot of information by default, but they don't provide enough.
For example, the default message generated by ModSecurity gives you some idea about what
the rule looks like, but it doesn’t tell you what the rule writer wanted to accomplish. This
is where metadata actions come into play. These actions are primarily used to document
rules and make them easier to handle. Here’s the same rule as earlier, but with additional
metadata:

SecRule REQUEST METHOD "!@rx ~(GET|HEAD)$" \
"id:1000,phase:1,block,t:none,log,rev:2,\
severity:WARNING,msg: 'Request method is not allowed'"

Technically, id is a metadata action. There are also several additional metadata actions:

Adding Metadata 103

 The rev action (short for revision) is essentially a change counter, or a serial number:
it starts at 1 and increments by one every time a rule changes. The idea is to make it
possible to determine at a glance whether a rule changed and, even better, to make it
possible for a program (that wouldn’t be able to understand the differences between
two rule versions anyway) to do the same.

o The severity action tells you how serious a detected problem is. ModSecurity adopted
the syslog system of severities, which are listed in Table 19.1. The least serious severity
is DEBUG (7) and the most serious one is EMERGENCY (1). At any given moment, the
HIGHEST_SEVERITY variable will hold the numerical value of the rule match with the
highest severity (with 1 being higher than 7, as far as severity is concerned).

 The msg action adds another message to the rule, which should explain the goal of a
rule, or its result.

The information in metadata actions is always used in alerts. The improved rule listed
earlier produces the following alert:

[2016-08-09 07:05:40.074810] [-:error] 127.0.0.1:49755 V61kpH8AAQEAAHCirqOAAAAA <
[client 127.0.0.1] ModSecurity: Warning. Match of "rx ~(GET|HEAD)$" against <
"REQUEST _METHOD" required. [file "/usr/local/modsecurity/etc/rules.conf"] [line «
"135"] [id "1000"] [rev "2"] [msg "Request method is not allowed"] [severity ¢
"WARNING"] [hostname "localhost"] [uri "/"] [unique_id "V61kpH8AAQEAAHCirqOAAAAA"]

That’s much better, but the alert still doesn't explain why any request method other than GET
or HEAD is restricted. Let’s try again:

Do not allow request methods other than GET or HEAD. The
site does not currently use any other methods; restricting
the methods allowed reduces the attack surface.
SecRule REQUEST METHOD "!@rx ~(GET|HEAD)$" \
"id:1000,phase:1,block,t:none,log,rev:2,\
severity :WARNING,msg: 'Request method is not allowed because \
it is not used by the application',tag:HARDENING"

This latest batch of improvements added a long description of the rule functionality and also
improved the alert message. In addition, it also uses the tag action to categorize the rule.
Tags are pieces of text that can be attached to rules, and it’s possible to attach one or more
tags. By convention, the first tag defines a rule’s primary category, and all other tags define
secondary categories. Knowing the category for a rule helps you understand what the rule
does. Categories also enable monitoring systems that collect alerts to construct pretty alert
pie charts with little effort (e.g., displaying how many alerts of each category occurred in a
time period). There are no clear guidelines for how to use tags; the Core Rule Set does use
them to categorize rules, but it doesn’t document the categories (and doesn’t guarantee that
the categories won’t change).

104 Chapter 6: Rule Language Tutorial

Rule ID Namespace

As you're already aware, every ModSecurity rule must have a unique identifier. For your
local rules, you’ll be using the local range of identifiers (from 1 to 99,999), giving you ample
space from which to select your IDs. However, even though youre technically free to use
IDs as you wish, in practice it’s better to design a strategy before you start writing your rules.
You'll find that some planning early on saves a lot of time later.

Consider the following possibilities:

Different ModSecurity phases could each use their own ranges.

Rules shared between different services (servers) could use a range of their own so as
not to clash with one another.

Whitelisting rulesets used to lock down a specific service (via a positive security
model) typically need a lot of rules. I've found that assigning a separate rule range
helps with the organization.

If you work with the OWASP ModSecurity Core Rule Set and possibly other rulesets,
it’s likely that you’ll need to write rules to handle false positives at runtime. Use a
separate range for this purpose.

If there are multiple applications running on the same server, perhaps you’ll want to
assign different rule ranges to different applications.

Considering the previous points, I've developed the following approach for this book:

1,000-1,999: Phase 1

2,000-2,999: Phase 2

3,000-3,999: Whitelisting rules (phase 1 and phase 2)
4,000-4,999: Ruleset tuning (phase 1 and phase 2)
6,000-6,999: Phase 3

7,000-7,999: Phase 4

9,000-9,999: Phase 5

10,000 onwards: Shared rules

Rule ID Namespace

105

Table 6.1. Variables sensitive to operating mode

Variable Availability in reverse proxy mode
AUTH_TYPE Reverse proxy authentication

ENV Reverse proxy environment
PATH_INFO Not available

SCRIPT BASENAME
SCRIPT FILENAME
SCRIPT GID
SCRIPT_GROUPNAME
SCRIPT MODE

SCRIPT UID
SCRIPT_USERNAME
SERVER_ADDR
SERVER_NAME
SERVER_PORT
WEBSERVER_ERROR_LOG

Can't be trusted on reverse proxy
URL with prefix proxy:// on reverse proxy
Not available

Not available

Not available

Not available

Not available

Reverse proxy address

Reverse proxy name

Reverse proxy port

Reverse proxy error log

Embedded Versus Reverse Proxy Mode

ModSecurity doesn't care whether it’s deployed in embedded or reverse proxy mode. In re-
verse proxy mode, Apache takes care of the transfer of data to the backend server and back,
so there’s very little for ModSecurity to worry about. There are only few small differences,
which I'm listing here for reference:

1.

In an embedded scenario, there will typically be a resource (a script or a file) used
to fulfill each request. ModSecurity rules can inspect the properties of such files
(the SCRIPT_* family of variables allows access). In reverse proxy mode, virtually all
requests will be fulfilled by backend servers, which means that local resources won’t
be used and that the use of the variables that reference them makes little sense.

When embedded, ModSecurity gives access to the web server environment and error
log. When used in reverse proxy mode, you still get access to both the environment
and the error log, but to those of the reverse proxy. The backend servers will have
their own environments and error logs, which ModSecurity can’t access.

Apache’s Directory, DirectoryMatch, Files, and FileMatch configuration contexts
never match when used in a reverse proxy.

There are potential evasion issues when a reverse proxy is used in front of a backend
system that interprets URIs differently (e.g., if you have a Unix box in front of a Win-
dows box). In such cases, you have to be very careful if you're using the <Location>
or <Proxy> configuration context. They are case-sensitive and recognize only forward

106

Chapter 6: Rule Language Tutorial

slashes, whereas other platforms may have filesystems that are case-insensitive or
web servers that support the backslash as the URI path separator. Some variables are
sensitive to the operating mode (see Table 6.1).

Summary

Now that you've completed the rule tutorial, you should have a good understanding of rule
writing. I thoroughly enjoyed working on this chapter, because it reminded me of every
single rule feature—even the ones I don’t use very often.

In the next chapter, we turn our attention to ModSecurity’s existence within Apache. You'll
learn the minimum necessary about how Apache handles its configuration files, which
will help you organize your rules effectively. You'll also learn about configuration contexts
and inheritance, concepts that will allow you to both simplify your configuration and use
different configurations for different sites and applications in the same server.

Summary 107

1 Rule Configuration

This chapter is the last of those that cover the core language. Whereas the previous chapter
focused on how to write individual rules, this chapter focuses on higher-level concepts, such
as the following:

« Apache configuration syntax
« How ModSecurity fits into Apache configuration files
« Configuration contexts and inheritance

 Rule manipulation

Apache Configuration Syntax

First, you should view Apache configuration as a single file that consists of many lines of
text. In reality, any configuration can be split among many files, but that’s only for our
convenience. To Apache, it’s just line after line after line.

If you look at a typical configuration file, you’ll find that every line falls into one of three
groups:
Empty lines
Empty lines (either those that are genuinely empty, or those that contain only whites-
pace characters) have no function as far as Apache is concerned, but they help make
configuration files easier to read.

Comment lines
Comment lines have the # character as the first nonwhitespace character; any text
can follow. Comment lines are often used to make configuration files user-friendly
by providing documentation. They’re also used to deactivate parts of configuration
without deleting them, which is handy if you ever want to put the deactivated parts
into use again.

109

Data lines
If a line is neither empty nor a comment line, then it’s a data line, and Apache will use
it in configuration building.

With all this in mind, let’s look at an example configuration fragment:

It's always useful to begin configuration with a comment.
Perhaps you have something important to say-for
example, what's this configuration for?

The one empty line above helps separate one comment from another.

The following line is a single data line.
SecRuleEngine On

Breaking Lines

In practice, configuration lines can be as long as you need them to be. Apache’s configura-
tion files do have their limits—16 MB for normal configuration files on Apache 2.4 and
8,190 bytes for .htaccess files—but I've never encountered them, and you probably won't
either. You'll want your lines to be on the short side anyway. Most configuration tweaking
and maintenance takes place remotely, so for best results your lines need to fit within your
shell window. Otherwise, you'll either have to do a lot of scrolling or use the automated
word-wrapping facility, if your editor supports it.

To split a long line into two, use a single backslash character followed by a newline:

SecRule ARGS "@rx <script>" \
id:2000,phase:2,block,t:none

Apache will interpret the previous two-line configuration snippet as a single line. You can
use this trick as many times as you want to create single logical lines that consist of multiple
actual lines.

You can place a break at any location, but some places are better than others. I prefer to
indent continued lines, but although my eye doesn’t see the indentation, the whitespace
actually ends up in the line. Unless you break the line somewhere that whitespace doesn’t
matter, you'll end up with a gap. The best place for a continuation is between directive
parameters, as in the previous example. With rules, the first two parameters are generally
short, so in most cases you'll place the continuation after the second parameter—again, as
in the example. Action lists are often too long to fit even on a broken line; I often find myself
breaking the parameter across lines. When you do that, the best place for a break is just after
a comma (that’s where whitespace doesn’t matter).

110 Chapter 7: Rule Configuration

Directives and Parameters

Every data line begins with a directive name, followed by zero or more parameters. Apache
supports the following directive parameter styles:

« No parameters.

« A single boolean parameter, which allows for only On or 0ff values (e.g.,
SecRuleInheritance).

+ One, two, or three free-form parameters, where each parameter has a separate mean-
ing; parameters other than the first can be optional (e.g., SecRule and SecRuleScript).

 Any number of free-form parameters, but all must have the same meaning (e.g.,
SecResponseBodyMimeType).

Directive parameter values are separated from one another using whitespace:
SecRule ARGS "@rx <script>" "id:2000,phase:2"

If you have a value that contains one or more whitespace characters, you'll have to enclose
the entire value in quotation marks, a signal that will enable Apache to understand that
there’s only one parameter inside:

SecRule RESPONSE BODY "@rx Error has occurred" "id:7000,phase:4"

When there are no whitespace characters inside parameter values, you don’t have to use
quotes (even when the value contains a lot of unusual characters), but you can. Whatever
you do, just be consistent and always use the same approach.

Spreading Configuration Across Files

As your configuration grows, you'll find it more difficult to find your way around. That’s
especially true with ModSecurity, because not only will you have the configuration, but
there will be many rules, some of which you may be writing yourself and some of which you
may be downloading from an external source.

Apache configuration always begins with a single file, but you are allowed to include other
configuration files using the Include directive. The following, for example, could be a
skeleton for your ModSecurity configuration:

Include conf/modsecurity/main.conf
Include conf/modsecurity/preamble.conf
Include conf/modsecurity/rulesi.conf
Include conf/modsecurity/rules2.conf
Include conf/modsecurity/rules3.conf
Include conf/modsecurity/epilogue.conf

Directives and Parameters 111

The paths I used in this example are all relative; Apache will resolve them using its main
installation path (e.g., /usr/local/apache) as a starting point. Of course, you can use
absolute paths if you like, but that usually means more typing.

The Include directive can also include several files in one go when you use the following
Unix shell-style wildcard characters:

 ?: Any one character
o *:Zero or more characters
« \: Escapes the character that follows

o []: Exactly one character from the range (e.g., [0-9] for a digit)

The most common way to use this feature is to include all files that end with a particular
suffix:

Include conf/modsecurity/*.conf

If an Include line resolves to multiple files, they’ll be included in alphabetical order in
Apache. Thats quite logical, but doesn’t always work as desired, because we tend to choose
names based on the purpose the files serve. A common strategy is to use numbers in
filenames to control the order in which they’re included. The example Include line used
with the previously discussed hypothetical ModSecurity configuration wouldn't include the
files in the correct order, but the inclusion will be in the correct order if we rename the files
as follows:

00-main.conf
10-preamble.conf
20-rulesi.conf
30-rules2.conf
40-rules3.conf
90-epilogue.conf

I've intentionally selected a larger range than needed (0-99) and left gaps between numbers,
because that will allow me to insert new files in between the existing ones.

Warning

Explicitly listing each file you want to include is probably the safest approach. If
you point Include to a directory, it will include all files in it and all the files in all
its subdirectories. This particular feature isn’t very useful, because you’ll virtually
never have a directory that will contain just configuration files; there will always be
something else, and that something will break your configuration. Also note that
when using ModSecurity with Nginx and IIS, the Include directive doesn’t sort
files by name when including folders.

112 Chapter 7: Rule Configuration

Container Directives

Apache supports two directive types. The standard variant, which you've already seen, is
defined by a single configuration line (which may be split across several physical lines). The
other variant, container directives, uses a syntax similar to XML. Container directives have
the following characteristics:

o They always come in pairs, which we call tags.

« The starting tag begins with < and ends with >.

o For parameters, the starting tag uses the same format as all other directives.
« The ending tag begins with </ and ends with >.

« The ending tag can’'t have parameters.

o The directives enclosed in the pair of tags (possibly including other container direc-
tives) are nested in a new configuration context.

Look at the following example:

This is the main configuration context

<VirtualHost demo1l.example.com>
This is the configuration context
used by demol.example.com

<Location /special/>
This is the configuration context
used by demol.example.com/special
</Location>
</VirtualHost>

<VirtualHost demo2.example.com>
This is the configuration context
used by demo2.example.com
</VirtualHost>

The main configuration context exists in every configuration. There are two further
<VirtualHost> contexts, nested in the main configuration context, and one <Location>
context, nested in one of the virtual hosts.

ModSecurity doesn't define any container directives itself (modules are allowed to create
such directives, too), but it integrates with all the container directives used by Apache.

Configuration Contexts

Apache allows for several types of configuration contexts using container directives. Config-
uration contexts are mechanisms that allow you to apply configuration to only parts of the

Container Directives 113

server. The example in the previous section demonstrated the three most commonly used
conﬁguration contexts—the main conﬁguration context, <VirtualHost>, and <Location>—
but there are others. The following is the complete list:

Main

The main (implicit) configuration context is used by default. Unless a configuration
uses explicit configuration contexts, the entire server will use a single configuration
context.

<VirtualHost>

The <VirtualHost> configuration context is used to create a new virtual host, possibly
using a configuration unique to it. Apache will automatically choose the correct
virtual host to use for a request, based on the host information supplied in every
request.

<Location» and <LocationMatch>

The <Location> and <LocationMatch> directives both create location-specific con-
figuration contexts. Apache will automatically choose the correct location-specific
configuration context to use based on the active virtual host and the information
provided in every request’s URL

<Directory> and <DirectoryMatch>

The <Directory> and <DirectoryMatch> directives both create directory-specific con-
figuration contexts. This type of context makes sense only when there’s no proxying,
because proxies typically don't interact with local filesystems. Directory-specific con-
texts will be used, but Apache determines which file on the local filesystem will be
used to serve a request.

<Files> and <FilesMatch>

The <Files> and <FilesMatch> directives both create file-specific configuration con-
texts. Apache automatically chooses the correct file-specific configuration context to
serve a request, but only after it determines which file will be used.

<Proxy> and <ProxyMatch>

The <Proxy> and <ProxyMatch> directives both create proxy-specific configuration
contexts. Apache will automatically choose the correct proxy-specific configuration
to use based on the <ProxyPass> directive or the rewrite rule used to initiate a proxy
connection.

Note

There are subtle differences between the <Location>, <Directory>, <Files>,
and <Proxy> directives and their respective <LocationMatch>, <DirectoryMatch>,
<FilesMatch>, and <ProxyMatch> counterparts. Each provides a different way to
achieve the same effect. You should invest some time in studying the Apache
documentation to understand how and why these directives are different.

114

Chapter 7: Rule Configuration

Configuration Merging

When configuration is simple, a request will use only one configuration context, but when
configuration is complex, configuration contexts may overlap. For example, you may define
some rules for a specific virtual host and some further rules for a specific location. Those
two configuration contexts have to be merged into a single configuration context before a
request that triggers both can be handled. Merging always takes place between two contexts
at one time. Multiple merging operations will be performed when there are three or more
configuration contexts to merge.

There are two aspects to understand about merging:

o The parent-child relationship is significant, as is the order in which contexts are
merged. For example, if you define a setting in both contexts, one of the two values
may be overwritten by the other. If there are three contexts to be merged, with a
different value for the same setting in each context, you need to understand the order
in which merging operations will happen.

o Apache initiates the process, but every individual module handles the merging of its
configuration. Thus, to understand merging, you need to study the documentation
of each module you're using. Some simpler modules may not support merging at all,
whereas complex modules (e.g., ModSecurity) will use different merging strategies for
different configuration directives.

The order in which contexts are merged can be quite complex to understand if you want to
use every possible combination, but my advice is to simplify, as follows:

« Outside of the main configuration context, use only the <VirtualHost> and <Location>
container directives.

o Remember that multiple <Location> containers (in the same virtual host) are pro-
cessed in the order in which they appear in the configuration file.

If you follow this advice, your configuration will start with rules in the main configuration
context, which will then be overwritten by the per-virtual-host configuration, which will
then be overwritten by the per-location configuration. In this way, the behavior is easily
predictable. However, if you chose to mix multiple container directives, you'll need to test
the exact behavior of the server.

Configuration and Rule Inheritance

ModSecurity uses two inheritance (configuration merging) strategies. The first strategy is
used for nonrule directives (e.g., SecRuleEngine); the second applies to rules.

Configuration Merging 115

Configuration Inheritance

For configuration settings, ModSecurity implements a straightforward merging strategy:
o The child context inherits all settings from the parent configuration context.

o The settings explicitly defined in the child context will overwrite those defined in the
parent context.

Consider the following example:

SecRuleEngine On
SecAuditEngine RelevantOnly

<VirtualHost www.example.com>
SecRuleEngine DetectionOnly
</VirtualHost>

The effective configuration of the main context is exactly as it appears in the configuration
file:

SecRuleEngine On
SecAuditEngine RelevantOnly

As for the configuration of the one virtual host, you can work it out using the two previously
mentioned rules. First, start with the configuration of the parent configuration context, then
use the value of SecRuleEngine with DetectionOnly instead of the inherited On.

Warning

The only exception to the preceding rules is SecDefaultAction, the values of which
aren’t inherited across configuration contexts. The default action list will always
revert to default in every new configuration context.

Rule Inheritance

Because rules cant overwrite one another in the way predefined settings can, different
merging rules apply:

1. The child context inherits the rules from the parent context.

2. The rules defined in a child context are added after the rules defined in the parent
context.

This, too, should be intuitive—for example:

SecRule ARGS "@rx K1" id:2000,phase:2

<VirtualHost www.example.com>

116 Chapter 7: Rule Configuration

SecRule ARGS "@rx K2" id:2001,phase:2
</VirtualHost>

In this example, there will be one rule defined in the main configuration context (the rule
2000), but two in the virtual host (2000 first, then 2001).

The positioning of a child context within the parent context doesn't influence the configura-
tion of either context. The following segment, which uses a different layout, arrives at the
same configuration as the previous example:

<VirtualHost www.example.com>
SecRule ARGS "@rx K2" id:2000,phase:2
</VirtualHost>

SecRule ARGS "@rx K1" id:2001,phase:2

This is because configuration processing is a two-step process in Apache: all configuration
contexts are created in the first step, with merging following in the second. From that point
of view, the two previous configuration snippets are practically identical.

Rule inheritance is a desired feature in most circumstances, because you’ll specify your
general configuration in the main configuration context or in the virtual host container and
then use more specific per-location contexts for tweaking. In such circumstances, it makes
sense to begin with the rules specified in the parent configuration context. If you ever need
to completely redefine the rules that run in a specific location, ModSecurity allows you to
disable rule inheritance using the SecRuleInheritance directive, as follows:

SecRule ARGS "@rx K1" id:2000,phase:2

<VirtualHost www.example.com>
SecRuleInheritance Off
SecRule ARGS "@rx K2" id:2001,phase:2
</VirtualHost>

In this example, in the virtual host context the configuration will contain only the rule 2001,
because rule inheritance was disabled.

Location-Specific Configuration Restrictions

There is a significant problem related to how inheritance (of both configuration and rules) is
implemented in ModSecurity: phase 1 takes place before anything specified in a <Location>
configuration container is evaluated. This is an implementation detail, but one with signifi-
cant consequences:

« Phase 1 rules must be placed in the main configuration context or within
<VirtualHost> contexts.

Location-Specific Configuration Restrictions 117

o Any phase 1 rules placed in <Location> will be ignored silently.

« Any configuration changes made in <Location> will take effect, but only for whatever
happens in phase 2 and later.

The execution phases were implemented in this way to enable ModSecurity to act as early as
possible in the transaction lifecycle, the reasoning being that acting early might help protect
against flaws within Apache and third-party modules.

Note

If you need to place phase 1 rules within <Location> containers, there’s a compile
time configuration option called --disable-request-early that allows you to shift
the execution of phase 1 later into the lifecycle of the request. Phase 1 will now
happen after the <Location> container has been evaluated, and phase 1 rules within
<Location> are now active.

SecDefaultAction Inheritance Anomaly

There is one exception to the configuration merging rules outlined in the previous sections:
the SecDefaultAction setting isn't inherited. This exception is more of a bug than anything
else, and it can lead to some very subtle problems and unexpected behavior—for example:

SecDefaultAction phase:2,deny,log,auditlog
SecRule ARGS "@rx Ki" id:2000,phase:2

<VirtualHost www.example.com>
SecRule ARGS "@rx K2" id:2001,phase:2
</VirtualHost>

In this example, the first line of the configuration will change the built-in default action list
to activate blocking. The change will be picked up by rule 2000, which follows in the same
configuration context; rule 2000 thus will block. In the nested configuration context for
the www.example.com virtual host, because there’s no inheritance of SecDefaultAction, the
default action list will revert to the built-in value (phase:2,pass,log,auditlog). Rule 2001
thus will only warn, although it would be more intuitive if it blocked.

Rule Manipulation and Exclusion

When you write your own rules, it makes sense to change them directly whenever you want
to make a change. The same approach doesn’t work with third-party rules; it effectively
creates a fork and makes upgrades difficult. ModSecurity has a mechanism or two that you
can use to exclude or change rules without actually changing them at their original location.
Instead, youre manipulating the rules either after theyre loaded at configure-time or as
transactions are evaluated at runtime.

118 Chapter 7: Rule Configuration

Whenever possible, you should choose configure-time manipulation, because this approach
results in the best performance and better readability. On the other hand, configure-time
manipulation is quite limited, because it’s unconditional; it results in a permanent modifica-
tion of a rule within a context. Runtime manipulation is slower but flexible: with it, you can
use the rule language to evaluate a transaction in any way you choose and then make your
modifications.

Note

There is a subtle difference in how the two approaches to rule manipulation are
implemented. Configure-time manipulation has to be performed after the rules
being changed are defined. In contrast, runtime manipulation needs to happen
before the rule you want changed is evaluated.

Removing Rules at Configure-Time

ModSecurity supports a configure-time mechanism that allows the removal of a rule for
which you know the ID, after the rule has been defined. Alternatively, you can also remove
rules for which you know the messages or a group of rules that share a tag. Such removals
are achieved using SecRuleRemoveById, SecRuleRemoveByMsg, and SecRuleRemoveByTag, re-
spectively. The following example demonstrates all three directives:

Example of removing a rule by its ID
SecRule ARGS "@rx K1" id:2000,phase:2,deny,log
SecRuleRemoveById 2000

Example of removing a rule by its message
SecRule ARGS "@rx K2" "id:2001,phase:2,deny,log,msg:'Strange error occurred'"
SecRuleRemoveByMsg "Strange error occurred"

Example of removing rules using tag matching

SecRule ARGS "@rx K3" "id:2002,phase:2,deny,log,tag: 'Strict pattern match/K3'"
SecRule ARGS "@rx K4" "id:2003,phase:2,deny,log,tag: 'Strict pattern match/K4'"
SecRuleRemoveByTag "Strict pattern match”

SecRuleRemoveById is quite flexible, because it allows you to list any number of rule
IDs and rule ranges (e.g., 2000-2099), and it will remove all the rules that match. The
SecRuleRemoveByMsg and SecRuleRemoveByTag directives are similar in flexibility: their one
parameter is a regular expression that also supports removing multiple rules at once.

Removing rules at configuration time as presented in the examples thus far doesn’t make
any sense, of course—but it will once I change the example slightly. Imagine that you have a
third-party ruleset you want to use:

Include /usr/local/modsecurity/core-rules/rules/*.conf

Removing Rules at Configure-Time 119

When you deploy the ruleset, you discover that there’s one rule that produces a high volume
of false positives. Youre now faced with a dilemma: do you remove the offending rule, or do
you live with it? If you choose the former, you’ll be forced to assume the maintenance of the
ruleset and you won't be able to update it automatically. If you choose the latter, you’ll have
to tolerate the false positives.

However, armed with SecRuleRemoveById, its friends, and the IDs (or messages or tags)
extracted from the false positives, you can now remove the offending rule without actually
modifying the third-party ruleset:

Include /usr/local/modsecurity/core-rules/rules/*.conf

Excluding rule 920320: Request Missing a User Agent Header
SecRuleRemoveById 920320

Thus, we've established that removing rules at configuration time can be very useful if you're
unable for some reason to modify the original rulesets. You'll find another application for
this technique if you ever need to customize your rulesets for parts of application, which is
done by creating a more specific configuration context in Apache, as follows:

<VirtualHost www.example.com>
Your ModSecurity configuration directives and rules here
...

A more-specific configuration context in which
you don't want to run the rule 2000
<Location /moreSpecific/>
SecRuleRemoveById 2000
</Location>
</VirtualHost>

Updating Rule Actions at Configure-Time

Speaking of changing rules at runtime, sometimes you’ll encounter a rule that isn't a false
positive, but just does something you don’t want it to. For example, there may be a rule
that was hard-coded to block in a particular way, but you want it to warn or to block
in another way. You can change what the rule does on a match at runtime, using the
SecRuleUpdateActionById directive:

SecRule ARGS "@rx K1" id:2000,phase:2,deny,log
...

SecRuleUpdateActionById 2000 pass

120 Chapter 7: Rule Configuration

For simplicity, this example shows two rules in the same configuration context, but—as
discussed in the previous section—changing rule actions like that is only useful when you
can’t change the rules themselves—or when you don’t want to.

The ability to change rule actions was designed primarily to allow you to change disruptive
actions, which is why this ability supports changing action lists only for standalone rules or
for the first rule in a chain. However, you can change action lists in rule chains by specifying
a rule offset after a rule ID and separating the two with a colon. The following example
updates the second rule in the chain and lets you call a script in case of a match:

SecRule ARGS "@rx K1" id:2000,phase:2,deny,log,chain
SecRule ARGS "@rx K2"

Fork execution of external script
SecRuleUpdateActionById 2000:1 exec:/path/to/my.script

Updating Rule Targets at Configure-Time

You can change a rule’s target list at configure-time. For example, you may find that a group
of rules is matching on a parameter that you know isn't vulnerable, and you want to stop
the rules from looking at it. Instead of removing the rules completely like we did in previous
sections, we can exclude the rules for a certain parameter only:

Include /usr/local/modsecurity/core-rules/rules/*.conf
...

SecRuleUpdateTargetByTag attack-xss "!ARGS:content"”

The second rule will find the offending rules by tag (attack-xss) and then append the
second parameter to the list of inspection variables. At runtime, the list of target variables
will be generated, with your appended instructions removing the parameter content from
inspection.

Note

SecRuleUpdateTargetByTag and its siblings SecRuleUpdateTargetById and
SecRuleUpdateTargetByMsg are not working across different configuration contexts.
This means that you can’t define a rule in the server context and then update its
targets within a <VirtualHost> block.

Updating Rule Targets at Configure-Time 121

Removing Rules at Runtime

As explained previously, you can exclude rules at runtime. This has a small performance
impact, but allows for greater flexibility. Armed with one or more rule IDs (or messages
or tags), a rule that runs first can prevent other rules from running, as in the following
example:

SecRule REMOTE_USER "@rx admin" \
"i1d:1000,phase:1,pass,nolog,ctl:ruleRemoveByTag=attacks-sqli

Include /opt/modsecurity/core-rules/rules/*.conf

If the first rule matches, the associated ctl action runs. Because the ctl action specifies the
ruleRemoveByTag action, the engine will make a note that it shouldn’t run rules that have the
attacks-sqli tag. Later in the phase, if the engine reaches a rule matching the tag, it will
skip over it and exclude the rule from running.

Note

The order of the directives is very important, because the ctl action must run
before the rules that you wish to remove or manipulate. There will be no effect if
the rules have run already.

Updating Rule Targets at Runtime

You can change a rule’s target list at runtime—provided, of course, that you do so before the
rule you want to change runs. Consider the following example, in which I've written three
rules to manipulate several rules from the Core Rule Set at runtime:

SecRule REQUEST URI "@beginsWith /submit" \
"id:2000,phase:1,pass,nolog,ctl:ruleRemoveTargetById=930120;ARGS:mailbody"

SecRule REQUEST URI "@beginsWith /submit" \
"id:2001,phase:1,pass,nolog,\
ctl:ruleRemoveTargetByMsg=Restricted.*Character\sAnomaly\sDetection;e

ARGS :mailbody"

SecRule REQUEST URI "@beginsWith /submit" \
"id:2002,phase:1,pass,nolog,ctl:ruleRemoveTargetByTag=attack-sqli;ARGS:mailbody"

Include /opt/modsecurity/core-rules/rules/*.conf

All three rules activate on transactions the URIs of which begin with /submit; they’re
designed to reduce what’s being inspected, from the default ARGS to ARGS:mailbody. The idea
is to reduce the rate of false positives. The first rule changes only one rule, that with ID
930120. The second changes all rules for which their messages match the regular expression

122 Chapter 7: Rule Configuration

defined with ctl:ruleRemoveTargetByMsg. Finally, the third rule affects all rules that have
the attack-sqli tag.

Configuration Tips

As described in this chapter, ModSecurity provides great flexibility in organizing your rules.
There isn’t one best method, so you should use the approach that makes maintenance easy
for you. The following tips may help you choose a method:

The simplest approach is to define all your rules in the main server body. Then, if
there’s a need to do something differently in a particular site, you can take one of the
following actions:

« Append new rules by placing them into the correct <VirtualHost> tag.

o Opverride the rules from the main server body using the techniques described earlier
in this chapter.

o Turn off rule inheritance completely, then implement a new policy from scratch.

There is also a middle way in which you keep all your rules in the main server body
but write them in such a way that they behave differently, depending on the host.

For example, you could have a rule that determines which host is running it, then
takes different paths in the ruleset. Alternatively (and somewhat more safely), your
<VirtualHost> contexts could make use of the SecWebAppId directive to define all your
applications; in your rules, you could use the WEBAPPID variable to change processing at
runtime.

The same advice applies equally to those cases in which you need to use different
policies within one site, the only difference being that you’ll be using the <Location>
tags instead of <VirtualHost>.

A different approach to rule organization is to leave the main server configuration
empty, configuring only the individual sites. That’s fine too, so long as you understand
that there may be some requests that won't fall within any of the sites (e.g., bad
requests), which ModSecurity won't be able to see. In most cases it won't matter, but
your view of your web server activity may no longer be complete.

If your sites require significantly different policies, define each policy in a separate
file (or several files, if the policy is highly complex) and use the Include directive to
activate it. By doing so, you maximize reuse and minimize maintenance.

Third-party rulesets are best left in their own files, allowing you to easily replace

them with newer versions. If theyre well-written, you’ll be able to use the exclusion
techniques described in the section called “Rule Manipulation and Exclusion” earlier in
this chapter.

Configuration Tips 123

Summary

This chapter is the last in the series of chapters that discuss rule writing, a three-part
journey that started with an overview, proceeded through a step-by-step explanation of
every rule feature, and concluded with the high-level “glue” to tie everything together.

Rule writing was the second main topic of this book, after configuration. The next seven
chapters provide an in-depth look at the most important features of ModSecurity, with each
chapter generally focusing on only one aspect. The only exception is Chapter 9, Practical
Rule Writing, which contains a collection of topics that, although important, aren’t big
enough to be in chapters of their own.

The next chapter discusses persistent storage, quite possibly the single most important
facility in ModSecurity. You'll soon see why.

124 Chapter 7: Rule Configuration

8 Persistent Storage

This chapter is about the persistent storage mechanism, which adds long-term memory to
ModSecurity. Without persistent storage, youre condemned to look at only one transaction
at a time without knowledge of what came before it or whether what came before it is
important. With persistent storage, you can construct data models that mirror the main
elements of the models used in applications. Some of the elements you’ll want to track are
IP addresses, application sessions, and application users.

The persistent storage mechanism in ModSecurity can be described as a free-form database.
Every collection is a separate table. Within each table, you can have any number of records,
and the records will hold any number of variables. There’s no need for the records to be
uniform. You don't need to know in advance what you'll store, and you can even store
different data in different records. The storage mechanism was designed with ultimately
transient data in mind, so each record has an expiry mechanism built in, which enables
the database to essentially keep itself in shape, automatically removing expired records over
time.

That’s all fine, I hear you say, but what’s the persistent storage for? Here are a couple of
things that you can do (I'll show you how in the remainder of this chapter):

o Track IP address activity, attack, and anomaly scores

o Track session activity, attack, and anomaly scores

o Track user behavior over a long period of time

« Monitor for session hijacking

« Enforce session inactivity timeouts and absolute life span
 Implement periodic alerting

o Detect denial of service and brute force attacks

I'm sure that you'll find plenty of additional scenarios to use persistent storage in your own
environment. As a bonus, this chapter includes several examples to give you an idea of

125

what you can do with the Lua scripting language in ModSecurity. I could have written the
examples using ModSecurity rules, but for complex tasks Lua is a much better choice.

Manipulating Collection Records

In this section, T'll cover the basics of collection manipulation. We'll discuss creating records
first. In most cases, creation is all you need to do, and ModSecurity will take care of
everything else. The rest of the section will provide the details you need to know when you
want full control of the persistent storage mechanism.

Creating Records

Creating a record is a matter of deciding on a key and invoking the initcol action. The
IP collection, for example, is almost always initialized unconditionally using the remote IP
address. Because the REMOTE_ADDR variable is always available, it’s a good idea to initialize the
IP collection early, in phase 1, as follows:

Track IP addresses
SecAction id:1000,phase:1,pass,nolog,initcol:IP=%{REMOTE_ADDR}

A collection can be initialized with a record only once per transaction. If there are multiple
invocations of the initcol action for the same collection (IP in the example), the first
invocation will be processed and all the subsequent invocations will be ignored.

Note

The case of the collection names used in initcol doesn’t matter (i.e., IP is equiv-
alent to ip, Ip, or iP). That said, it’s customary to write collection names in
uppercase.

Although most collections use single variables for their keys, it’s perfectly possible to create
a key out of two or more variables. For example, sometimes you may have a large number of
users behind the same IP address but still may want to attempt to track them individually.
Although there’s not a way to do that reliably, a more granular method is to generate record
keys using a combination of the IP address and a hash of the User-Agent field:

Generate a readable hash out of the User-Agent

request header and store it in TX.uahash

SecRule REQUEST HEADERS:User-Agent "@unconditionalMatch" \
id:1000,phase:1,pass,t:none, t:shal,t:hexEncode, setvar:TX.uahash=%{MATCHED VAR}

Initialize the IP collection using a
combination of IP address and User-Agent hash
SecAction id:1001,phase:1,pass,nolog,initcol:IP=%{REMOTE_ADDR} %{TX.uahash}

126 Chapter 8: Persistent Storage

Currently, it's only possible to use the predefined collection names listed in Table 8.1. A
future version of ModSecurity might allow you to use any name (so long as the name
doesn’t clash with the built-in variables).

Table 8.1. Predefined collections

Collection Create with Description

GLOBAL initcol Global (per-server) data store

P initcol Per-IP-address data store

RESOURCE initcol Per-resource (typically URL) data store
SESSION setsid Per-session data store

USER setuid Per-user data store

The collection names were chosen to give clues about their intended usages, and I trust you
won't have any difficulty figuring out what those usages are. However, the rest of this section
will show you how to use each collection.

You'll notice that not all collections can be created using the initcol action. The SESSION
and USER collections each have a special initialization action to support application names-
paces (described in the section called “Application Namespaces” in this chapter).

Note

There’s no practical difference between creating a record and retrieving an existing
record. The initcol action will automatically create a new record if one doesn't
already exist.

Application Namespaces

A single server running ModSecurity can serve many different sites with their own separate
session IDs and user accounts. Although the session IDs will overlap only very rarely
(assuming that the ID generation algorithm is solid), there’s a good chance that username
collisions will be quite frequent if you run multiple applications on the same server. For
example, I imagine that every other application uses admin as the username for the main
administration account.

ModSecurity uses application namespaces to deal with this problem, allowing you to man-
ually specify application boundaries. Each application then receives a private space for
its SESSION and USER collections, preventing overlaps. Applications are defined using the
SecWebAppId directive. Your goal should be to use one unique application ID per applica-
tion—for example:

<VirtualHost www.ssllabs.com>
SecWebAppId ssllabs

Application Namespaces 127

</VirtualHost>

<VirtualHost www.feistyduck.com>
SecWebAppId feistyduck
</VirtualHost>

The method by which application namespaces are implemented is very simple. For normal
collections, the collection name is used to name the file in which its data will be stored.
For namespace-aware collections, the namespace is part of the name. Assuming the config-
uration in the previous example, the data persistence directory may contain the following
files:

default SESSION.dir
default SESSION.pag
feistyduck SESSION.dir
feistyduck SESSION.pag
IP.dir

IP.pag

ssllabs SESSION.dir
ssllabs_SESSION.pag

You can see that there’s one global database for the IP collection, but three databases for
sessions: one each for ssllabs and feistyduck applications, and one (default) for all other
applications together. Each database uses two files: the .dir files contains indexes, and
the .pag files contain data.

Initializing Records

After a collection is initialized, the record is entirely empty, but for complex rules you’ll
most likely need to populate it with some initial values. The special record variable IS_NEW
can be used to determine whether a record is new; you can test whether this variable is set,
and perform the initialization of the record if it is. In the following example, we'll set an
initial reputation in the IP.reputation variable, which will be saved automatically as a part
of the persistent IP address record:

Enable IP address tracking
SecAction id:1000,phase:1,pass,nolog,initcol:IP=%{REMOTE_ADDR}

Set the default reputation value for new IP records
SecRule IP:IS NEW "@eq 1" \
id:1001,phase:1,pass,nolog,setvar:IP.reputation=100

Controlling Record Longevity

The number of records in a collection can grow very quickly, especially in cases in which
you use one or more records per IP address and you have many users. To preserve space and

128 Chapter 8: Persistent Storage

improve performance, you want your records to be deleted as soon as you no longer need
them, but no sooner.

The principal way to control the removal of records is through the inactivity timeout
mechanism built into the persistence subsystem. This mechanism ensures the removal of
records that are no longer updated. Its operation is straightforward:

1. An inactivity timeout value is associated with every record.
2. Records are scheduled for deletion as soon as they’re created.

3. Ifarecord is written to, the expiry time is recalculated using the current timeout
value. This means that every activity prolongs the lifetime of a record.

4. The default inactivity timeout value is 3,600 seconds, but it can be changed by assign-
ing a different value to the TIMEOUT collection variable (e.g., setvar:IP.TIMEOUT=300).
A different default value also can be selected using the SecCollectionTimeout direc-
tive.

It’s a best practice to configure the desired inactivity timeout value only once, in a separate
rule that checks IS NEW before making any changes (as demonstrated in the previous
section).

Choose the correct value depending on what your collection does. Use the following list as
guidance:

o IP tracking: hours
o Session tracking: days
o User tracking: months

However, there are also security concerns to take into consideration: if your application has
a session inactivity timeout of 30 minutes, then you shouldn’t let your ModSecurity session
last much longer than that. Therefore, you need to look at each individual case and make
reasonable decisions.

Deleting Records

In most cases, you won't need to delete collection records explicitly; it's much better to
configure the correct timeout period and let the garbage collection process deal with
inactive records after they expire. There are currently two ways in which records are deleted:

o A special garbage collection process runs periodically to examine all records in all
known collections (i.e., the collections that have been activated during the transaction
using initcol, setsid, or setuid). This process will remove all expired records.

o When an attempt to retrieve an expired record is made, the expired record is deleted
and replaced with a new one.

Deleting Records 129

If you know that you no longer need a record, it's most efficient to delete it immediately.
That’s possible to do, in a roundabout sort of way; you can force its deletion by unsetting the
special KEY collection variable as follows:

Delete record
SecAction id:1000,phase:1,pass,nolog,setvar: ' IP.KEY

Detecting Very 0ld Records

Because the expiry time of a record potentially can be reset indefinitely, it isn’t impossible to
have a record survive for a very long time. Although ModSecurity won’t complain about a
record that’s too old, it does record the creation time, making it possible to write a custom
rule to inspect it. My first attempt at detecting very old records used the following Lua
rule (because I thought the calculations would be impossible to do in ModSecurity’s rule
language):

function main()
-- Retrieve CREATE TIME of the current IP record
local createTime = m.getvar("IP.CREATE_TIME");

-- If the variable is available and if the record is older

-- than 24 hours, report the problem back

if ((createTime ~= nil) and (os.time() - createTime > 86400)) then
-- Retrieve the record key, which will
-- make the error message more useful
local key = m.getvar("IP.KEY");

-- Match
return "IP record older than 24 hours (" ..
(os.time() - createTime) .. "s): " .. key;
end
-- No match
return nil;
end

To use the rule, place it in a file called check ip create time.lua, and call it as follows:

Check the CREATE_TIME of the IP collection
SecRuleScript check_ip create time.lua \
id:9000,phase:5,pass, log

If you want to delete such old records (using the technique described in the previous
section), use the following rule instead:

Delete very old IP collection records
SecRuleScript check ip create time.lua \
id:9000,phase:5,pass,nolog,setvar: | IP.KEY

130 Chapter 8: Persistent Storage

To learn more about writing rules in Lua, see Chapter 12, Writing Rules in Lua.

After seeing my Lua rule, Brian Rectanus came up with the following rule language equiva-
lent:

Detect very old IP records

SecAction "id:9000,phase:5,pass,log,\
msg:'IP record older than 24 hours',\
setvar:TX.exp=%{TIME_EPOCH},\
setvar:TX.exp=-%{IP.CREATE TIME},\
chain®

SecRule TX:exp "@gt 86400" "setvar:!IP.KEY"

Although the rule language doesn't support arithmetic operations in operators, it does
support addition and subtraction in the setvar action. The preceding example starts with
an unconditional rule that uses two setvar actions to calculate the age of an IP record. The
second rule then checks the result, which has been saved in the transient variable TX.exp.

Collection Variables

What makes collections beautiful is that they allow you to store any variable, and on a
whim. Once you initialize a collection (and thus obtain a record), you can use the setvar
action to create, modify, and delete collection variables. This section covers three additional
features that persistent collections do support, but ordinary collections don’t:

o Built-in variables, which give you insight into how a record is used

o Variable expiry, which allows you to remove (expire) a variable at some point in the
future

o Variable value depreciation, which allows you to reduce the value of a variable over
time

Built-In Variables

Every persistent collection contains certain built-in variables, as described in Table 8.2. The
use of these variables is explained throughout this section, but generally they’re populated
using the information provided by the underlying persistence mechanism, allowing you to
understand how individual records are used.

Collection Variables 131

Table 8.2. Built-in collection variables

Name Access Description

CREATE_TIME Read-only Record creation time, in seconds, since January 1, 1970 (epoch time).

IS NEW Read-only This flag is set on a record that has been created during this transaction.
KEY Read/delete Record key. Can be unset, in which case the record will be deleted.

LAST _UPDATE_TIME Read-only The last record update time, in seconds (prior to this transaction).
TIMEOUT Read/write The current timeout value, which will be used to extend the life of the

record on the next write. The timeout is initially set to the value of
SecCollectionTimeout, which is 3,600 seconds by default

UPDATE_COUNTER Read-only Update counter, which is incremented every time the record is persisted.
UPDATE_RATE Read-only Update rate in updates per minute. Measured over the entire lifetime of the
record.

Variable Expiry

The variable expiry mechanism enables you to schedule a variable to be expired (unset) at
some point in the future. You can use this feature whenever you want to execute an action
that will remain active for a period of time (long after the HTTP transaction that initiated it
is gone).

A good example of how to use this feature can be seen with IP address blocking. Assuming
you have the IP collection initialized, IP address blocking requires two rules:

1. One rule will decide when to block an IP address and set the appropriate flag in the IP
collection (let’s use IP.blocked for this example).

2. The second rule will block transactions originating from the flagged IP addresses.

For example:

Detect attack and install a persistent IP address block

SecRule ARGS "@rx attack" \
"id:2000,phase:2,block,log,msg: 'Blocking IP address for 60s',\
setvar:IP.blocked,\
expirevar:IP.blocked=60"

Enforce a persistent IP address block
SecRule IP:blocked "@eq 1" \
"id:2001,phase:2,block,msg: 'Enforcing earlier IP address block"'"

Note

If you want blocking to remain active for a very long period of time, make sure
that the IP collection timeout value is longer than the blocking period. If an IP
collection record expires, the block will expire with it.

132 Chapter 8: Persistent Storage

Variable Value Depreciation

Variable expiry works well for things that are black or white, right or wrong—but when you
have shades of gray, you'll need to use variable value depreciation (with the deprecatevar
action), which is designed to work with variables that contain numerical values. When you
employ depreciation, the numerical value of your choice is gradually reduced over time
until it reaches zero. This mechanism is typically used to work with anomaly or attack
scores.

Note

The deprecatevar action is implemented differently than expirevar. Whereas
expirevar uses a “fire-and-forget approach” and needs to run only once, the
deprecatevar action needs to be invoked continuously—in most cases, on every
request—for as long as you need the depreciation to remain active. The recom-
mended approach for expirevar is to use it in the same rule that creates (or
updates) a variable. The recommended approach for deprecatevar is to use it
unconditionally (with SecAction) in phase 5.

The deprecatevar action takes two positive integer parameters, separated by a forward
slash. The first number defines by how much the variable value will be reduced in a single
change. The second number defines the duration between changes. Together, the parameters
define the speed of depreciation. In the following example, the value of the IP.score
variable will be reduced by 1 every 5 seconds:

SecAction id:9000,phase:5,pass,nolog,deprecatevar:IP.score=1/5

The way in which you choose the numbers matters, because the reduction in value is made
at the discrete intervals defined by the duration parameter. That means that although both
1/5 and 60/300 will result in the same variable value after 300 seconds, in the first case there
would be 60 decrements of 1 at 5-second intervals, whereas in the second case you will get
just one decrement of 60 after 300 seconds. On every request, ModSecurity will check the
interval since the last update of the variable. As soon as the interval is greater than or equal
to the duration parameter, the depreciation will be executed in a single step. If there are no
transactions, then there will be no depreciation. However, if a new request is served after a
longer idle period, then multiple depreciation steps will be executed all at once.

For a complete example using depreciation, consider the following implementation of IP
address attack scoring:

Increment IP address attack score with every attack
SecRule ARGS "@rx attack" \
id:2000,phase:2,pass,log,setvar:IP.score=+1

Block IP addresses whose attack score is greater than 10

Variable Value Depreciation 133

SecRule IP:score "@gt 10" \
"id:2001,phase:2,block,log,msg:"'IP address anomaly score over 10 <
(%{1P.score})"'"

Decrement attack score by 1 every 5 seconds
SecAction id:9000,phase:5,pass,nolog,deprecatevar:IP.score=1/5

If you look at the debug log, you may find the following two lines for each variable being
depreciated:

[9] Deprecating variable: IP.score=1/5
[4] Deprecated variable "IP.score" from 17 to 15 (10 seconds since last update).

As you would expect, depreciation doesn’t occur when there’s no change in value. In such a
case, you'll see the following message in the debug log:

[9] Not deprecating variable "IP.score" because the new value (15) is the same as
the old one (15) (4 seconds since last update).

Note

Because the reduction in value happens only in the logging phase, a request
arriving after a longer idle period will be blocked before the reduction is executed.
Only subsequent requests will pass rule 2001 in the earlier example.

Implementation Details

Persistent storage in ModSecurity is implemented using the SDBM library, which is part
of Apache Portable Runtime (APR). SDBM was selected because it was already available
(ModSecurity depends on APR anyway) and because it allows for control of concurrent
access. The latter reason is very important, because in ModSecurity we potentially deal with
many concurrent transactions.

Retrieving Records

Collection records are retrieved when the initcol action is encountered. Assuming that the
collection wasn’t previously initialized, ModSecurity will look for the appropriate SDBM
database and fetch the record with the corresponding key. You can examine the process
when you increase the debug log level to 9:

[9] Resolved macro %{remote addr} to: 192.168.3.1

[9] collection_retrieve ex: collection retrieve_ex: Retrieving collection ¢
(name "ip", filename "/opt/modsecurity/var/data/ip")

[9] collection unpack: Read variable: name " _expire KEY", value "1471235160".
[9] collection unpack: Read variable: name "KEY", value "192.168.3.1".

134 Chapter 8: Persistent Storage

[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[4]
[4]
[9]
[4]

collection_unpack:
collection_unpack:
collection_unpack:
collection_unpack:
collection_unpack:
collection_unpack:
collection_unpack:
collection_unpack:
collection_retrieve ex:
collection retrieve ex:
collection retrieve ex:
collection_retrieve ex:

Read
Read
Read
Read
Read
Read
Read
Read
Removing
Removing

variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:

name
name
name
name
name
name
name
name
key "
key '

"TIMEOUT", value "3600".
" key", value "192.168.3.1".
__name", value "ip".
"CREATE_TIME", value "1471231223".
"UPDATE_COUNTER", value "30".

"LAST_UPDATE_TIME", value "1471231560".

"blocked", value "1".

blocked" from collection.

' _expire blocked" from collection.
Removed expired variable "blocked".
Retrieved collection (name "ip", key "192.168.3.1").

Recorded original collection variable: ip.UPDATE_COUNTER = "30"
Added collection "ip" to the list.

__expire blocked", value "1471231570".

The first line gives a clue about what key was used. Following that, there will be one line
for every variable retrieved from the database. You'll notice that some variable names begin
with two underscore characters (__). Those variables are internal to ModSecurity; you can
probably guess from their names what they do. The variables with names that begin with
the _expire prefix are created by the expirevar action to keep track of when individual
variables need to be expired.

Storing a Collection

All the records initialized during a transaction will be persisted after the transaction com-
Usually, persistence will require a straightforward write to the database:

pletes.

(9]
[9]
(9]
[9]
(9]
[9]
(9]
[9]
(9]
[9]
(9]
(4]
(4]

collection_store:
collection_store:
collection_store:
collection_store:
collection_store:
collection_store:
collection_store:
collection_store:
collection_store:
collection_store:
collection_store:
collection_store:

Note

Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote
Wrote

variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:

name
name
name
name
name
name
name
name
name
name
name

Persisted collection
Recording persistent data took 0 microseconds.

__expire KEY", value "1471237309".
"KEY", value "192.168.3.1".
"TIMEOUT", value "3600".

" key", value "192.168.3.1".

" _name", value "ip".
"CREATE_TIME", value "1471231223".
"UPDATE_COUNTER", value "36".
"reputation”, value "100".

"LAST_UPDATE_TIME", value "1471233709".

"blocked", value "1".

(name "ip", key "192.168.3.1").

If, while looking at your debug logs, you discover that an initialized collection
isn't being persisted, that’s because nothing was changed in it. When there are no
changes in the record, the copy in storage will be identical to that in memory, so
there’s no need to perform the expensive write operation.

__expire blocked", value "1471233719".

Storing a Collection

135

Because the writing is delayed until the end of a transaction and because there’s no record
locking (there can’t be any, because it would create a terrible bottleneck), there’s always a
race condition, due to the time gap between the moment a rule retrieves a record and the
moment it writes the record back to storage. By the time a record is persisted, some other
request may have changed the stored record values.

ModSecurity uses a double-retrieval mechanism with write-locking to deal with the concur-
rent access problem. It performs the following operations:

1. Locks the database
2. Retrieves the record again to obtain up-to-date values

3. For every numerical value that was changed, calculates the difference between what it
originally saw and what it has

4. Updates the numerical values in the record retrieved in step 2 by making relative
changes using the calculation from the previous step

5. Writes the record to disk
6. Unlocks the database

The debug log will show something similar to the following (note the delta calculations in
between the read and write operations):

[4] collection retrieve ex: Retrieved collection (name "ip", key "192.168.3.1").
[9] collection store: Delta applied for ip.UPDATE_COUNTER 35->36 (1): 35 + (1) = ¢
36 [36,2]

[9] collection _store: Delta applied for ip.counter 35->36 (1): 35 + (1) = 36 [36,2]
[9] collection store: Wrote variable: name " expire KEY", value "1471237309".

The locking and the delta calculations are necessary in order to ensure the integrity of
the persisted numerical values. Without them, multiple concurrent transactions would
overwrite one another’s values and the numerical values would be incorrect. By remember-
ing the changes rather than absolute values, ModSecurity ensures that numerical values
are always correctly persisted. Unfortunately, theres no way to ensure the integrity of
nonnumerical values in the concurrent access scenario (not without severe performance
degradation, that is). On the positive side, nonnumerical values are not frequently used
in persistent storage, and, when they are, theyre used in situations in which there is little
concurrent access.

Record Limits

The SDBM library imposes an arbitrary limit of 1,008 bytes on the combined size of key
length and record length. If you break this limit, the persistence operation will fail and you’ll
see the following message in your logs:

136 Chapter 8: Persistent Storage

Failed to write to DBM file "/usr/local/modsecurity/var/data/ip": Invalid argument

ModSecurity uses about 200 bytes for its needs (mostly the built-in collection variables),
which means that you have about 800 bytes left in a practical sense. Although 800 bytes
doesn’t sound like much, it's enough in most situations, because rules usually only save
numerical values in persistent storage.

Note

If you're running out of space, avoid using very long keys. Keys are stored in three
copies: two copies are used by ModSecurity, and one copy is used by SDBM itself. If
everything else fails, you can always resort to “brute force” and recompile APR and
APR-util to increase the size limit to a much higher value. Look for PAIRMAX 1008
in the SDBM source code in APR-util.

As a rule of thumb, you should avoid storing anything user-controlled in persistent storage.
For example, you might want to store the value of the User-Agent request header in a
SESSION collection to check for possible session hijacking attacks, but that value can be as
much as 8,190 bytes long (that’s Apache’s default request header limit). In such situations, it’s
better to store a value derived from the User-Agent value than to store the value itself.

Practically speaking, you can use the shal or md5 transformation function to “compress”
input of any size to a fixed-length value. Because the output of those two transformation
functions is binary, it's a good idea to follow them with a hexEncode transformation, making
the final value printable. The following is the rule from an earlier example, which takes the
value of the User-Agent request header and transforms it into a value (stored in TX.uahash)
that can be used with persistent storage:

SecRule REQUEST HEADERS:User-Agent @unconditionalMatch \
id:1000,phase:1,t:none, t:shal,t:hexEncode, setvar:TX.uahash=%{MATCHED VAR}

Applied Persistence

In this section, I will apply the previously discussed persistence techniques to several
real-life problems:

o Periodic alerting
o Denial of service attack detection

« Brute force attack detection

The combination of the persistence facilities and the rule language makes the examples that
follow particularly interesting. The techniques you’ll learn in the remainder of this chapter
will help you take your own rules to the next level!

Applied Persistence 137

Periodic Alerting

Periodic alerting is a useful technique when you only need to see one alert about a particular
situation and when further events would only create clutter. You can implement periodic
alerting to work once per IP address, session, URL, or even an entire application. First, you
choose the collection you want to work with, and then you create a special flag the presence
of which will tell you that an alert needs to be suppressed.

The best case for periodic alerting can be made when you're dealing with problems that
aren’t caused by an external factor, which typically happens with rules that perform passive
vulnerability scanning. Such rules detect traces of vulnerabilities in output and alert you to
them. They are quite handy because they can alert you of problems before they’re exploited.
If passive scanning rules are stateless, they may cause far too many alerts, because they’ll
report a problem whenever they see it, which may happen very frequently on busy sites.
If you're faced with such a problem, you’ll have probably seen the first couple of alerts,
and even if you aren’t doing anything to address the discovered issue, you don’t really want
to be reminded about it. That annoyance can be solved by updating passive vulnerability
scanning rules to alert only once, as I'll demonstrate.

To start, here’s a simple rule that detects application version leakage in the X-Powered-By
response header:

SecRule RESPONSE_HEADERS:X-Powered-By @unconditionalMatch \
"i1d:6000,phase:3,pass,log,msg: 'X-Powered-By information leakage'"

PHP version leakage is a minor issue that’s good to know about, but not with an alert on
every web server hit. The leakage is caused by a site-wide problem in the configuration of
the PHP engine, which means that we can use the GLOBAL collection to track it. We'll create a
special record (in the GLOBAL collection) for this one problem and use it to keep track of the
previous activity.

The following rule will detect X-Powered-By information leakage, but will warn about the
problem only once every 60 seconds:

SecRule RESPONSE HEADERS:X-Powered-By @unconditionalMatch \

"id:9000,phase:5,pass,log,\

msg: 'X-Powered-By information leakage (%{TX.temp} hits since last alert)',\

initcol:GLOBAL=1,\

setvar:GLOBAL.1d9000 counter=+1,\

chain”

SecRule &GLOBAL:id9000 flag "@eq 0" \
"setvar:GLOBAL.1d9000 flag,\
expirevar:GLOBAL.1d9000 flag=60,\
setvar:TX.temp=%{GLOBAL.1d9000 counter},\
setvar:GLOBAL.1d9000_counter=0"

138 Chapter 8: Persistent Storage

Let’s walk through what this rule does:

1. The first rule checks whether the problem exists by looking for a nonempty X-
Powered-By response header.

2. Upon successful detection, two actions are carried out:

a. Arecord in the GLOBAL collection is initialized, using the constant key 1. By per-
forming the initialization only after a match, we enhance performance of requests
without the leakage problem.

b. The counter value is increased by 1. Even if we don't alert on the problem, we keep
track of how many violations there were.

3. The second rule—which, being part of the same chain, is tested only after the first rule
matches—tests the GLOBAL.1d9000_flag variable, which will tell us if we've alerted in
the previous period of time. The presence of the variable is a sign that we shouldn’t
alert (you’ll see why in the next step). If the variable isn’t present, the rule will match,
and the following actions will be carried out:

a. The GLOBAL.id9000 flag variable will be created.
b. The GLOBAL.id9000 flag will be set to expire 60 seconds in the future.

c. The value of the GLOBAL.1d9000_counter variable is preserved in the temporary
variable TX.temp.

d. The counter (GLOBAL.1d9000_counter) is then reset to zero.

e. The match of the second rule will cause the entire chain to match and create an
alert. Note how the chain message makes use of the temporary variable TX. temp,
which stored the earlier value of the counter (which we've since reset).

Note

If you don’t need to track how many alerts were suppressed, omit the incrementa-
tion of the GLOBAL.1d9000 counter, which will save you a write to disk for every
suppressed alert (which could be a write for every request to your site, depending
on the nature of the problem being detected).

Even with this elaborate scheme to implement periodic alerting, it’s possible to get more
than one alert for a problem that occurs often (e.g., on every request). This is because
processing a request takes time, so it’s entirely possible for two requests to execute so close
to each other that they don't realize the alert has already taken place. We're minimizing the
chances of that happening by choosing phase 5 for the rule and using late initialization.
Collections are persisted right after the rules in phase 5 complete, which means that the
window of opportunity for the collision is minimized.

Periodic Alerting 139

If you need suppression to work per application script, use the RESOURCE collection. The
following rule is identical to the previous example, except that the collection initialization is
slightly different:

SecRule RESPONSE HEADERS:X-Powered-By @unconditionalMatch \

"id:9000,phase:5,pass,log,\

msg: 'X-Powered-By information leakage (%{TX.temp} hits since last alert)',\

initcol:RESOURCE=%{SCRIPT FILENAME},\

setvar :RESOURCE.1d9000 counter=+1,\

chain"

SecRule 8RESOURCE:1d9000_flag "@eq 0" \
"setvar:RESOURCE.id9000 flag,\
expirevar:RESOURCE.1d9000 flag=60,\
setvar:TX.temp=%{RESOURCE.1d9000 counter},\
setvar :RESOURCE.1d9000_counter=0"

The RESOURCE collection can give you access to a record that’s unique for the script that will
process the request. When ModSecurity is embedded in a web server, initialize the RESOURCE
collection in phase 2 using SCRIPT_FILENAME (which will map to the actual script on disk,
no matter what the request URI looks like). In a proxy situation, bear in mind that a single
script can be used for an unlimited number of request URIs. A proxy doesn’t understand
the path info portion of an URI, so when a transaction requests /index.php/1001 and then /
index.php/1002, it sees them as two different request URIs. A web server would see them
as only one script (when you use SCRIPT_FILENAME). Furthermore, it’s possible to have two
locations (e.g., /index.php in two different virtual hosts). To avoid the chance of a collision,
you should use the current hostname as part of the key.

Denial of Service Attack Detection

In general, reacting to denial of service attacks from within a web server is less than ideal.
When the target of an attack is the web server itself (e.g., the attacker is trying to overwhelm
it by sending a large number of requests or keeping a large number of connections open),
by the time a request reaches the web server, it will have already caused damage. Denial of
service attacks based on brute force should be handled by the network layer, where you can
minimize the attack impact. This doesn’t rule out deploying a detection mechanism on the
web server, but you need to implement the active defense at the network layer.

When it comes to attacks against applications, that’s another story, and you may actually
find ModSecurity very useful. Application attacks rely on being able to send cheap requests
(in terms of resources needed to send them) to applications that will use disproportionately
more resources (CPU, I/O, and RAM) to process them. Any application function that
performs intensive work is a good attack choice. For example, most simple database-backed
sites exercise no control over how many database connections they open and are easy

140 Chapter 8: Persistent Storage

prey. Send more than a handful of requests to such a site and it will suddenly start to
malfunction.

The simplest approach to detecting DoS attacks is to check the value in the UPDATE_RATE
variable of a collection. However, because collections are persisted only when there’s a
change to record, you need to ensure that the collection you’re using is written to on every
request that matters. A simple way to do that is to increment a counter on every request, as
in the following example using the IP collection:

SecAction id:1000,phase:1,pass,nolog,setvar:IP.counter=+1
SecRule IP:UPDATE RATE "@gt 10" \

"id:1001,phase:1,block,msg: 'Request rate (%{IP.UPDATE RATE}) too high for IP ¢
address %{REMOTE_ADDR}"'"

I have one concern about this approach, though: I don’t like the fact that the IP collection
is written to on every request. Unless you're already doing something with the IP collection,
constantly updating the collection will add to your overall resource consumption. That
doesn’t mean that it’s not going to work well, but it does mean that you need to watch it.

It’s possible to improve performance by focusing only on those requests that really matter.
If you examine your access logs, chances are good you’ll find that only a fraction of all
requests are forwarded to the application, with the rest being requests for static resources,
such as images, JavaScript, and CSS files. Static files are delivered efficiently by the web
server, and you can probably avoid tracking them in ModSecurity. By amending the first
rule in the previous example to increment only on a nonstatic request (using an unreliable
method of checking the file extension, which will be sufficiently good in this case), we can
increase the efficiency of our application DoS detection—for example:

Only increment the counter if the

request is for a dynamic resource

SecRule REQUEST FILENAME "!@rx \.(jpg|png|gif|js|css|ico)$" \
id:1000,phase:1,pass,nolog,setvar:IP.counter=+1

Note

The UPDATE_RATE value is calculated over the lifetime of a record. If you keep the
records alive for a long period of time, a spike of activity (which may or may not be
a DoS) won't affect the overall rate significantly.

You can use the DURATION variable to discover how long a transaction has been running. This
information is useful to keep track of how much time the web server is spending per IP
address, session, or user.

The following example keeps track of the resources spent on every IP address:

Initialize IP collection and immediately
deprecate existing load data

Denial of Service Attack Detection 141

SecAction "id:1000,phase:1,pass,nolog,\
initcol:IP=%{REMOTE_ADDR},\
deprecatevar:IP.load=250/1"

Block the IP addresses that use too

much of the web server's time

SecRule IP:load "@gt 10000" \
"id:1000,phase:1,block,t:none,\
msg:'IP address load too high: %{IP.load}""

Keep track of how much web server

time is consumed by each IP address

SecAction "1d:9000,phase:5,pass,nolog,\
setvar:IP.load=+%{DURATION}"

You mustn’t forget to use the deprecatevar action to ensure that the load value goes down
during periods of inactivity; otherwise, the load will keep increasing and the block will
never drop. Please note that the values I used in the example are completely arbitrary and
aren’t likely to work on your sites. Use the trial and error approach until you arrive at values
that work for you. Similarly, keep in mind that a clients communication speed may affect
the time he or she spends with a transaction. Excessively large pages may have skewed
DURATION values. If youre buffering response bodies, I suggest that you move the tracking
rule from phase 5 (which occurs after a transaction is complete) to phase 4 (which occurs
just before a response body is sent).

Finally, if you get tired of looking at the debug log as you test your persistent rules, consider
displaying the update rate (or load) as a part of the access log of the server, together with the
duration of the full request and possibly other performance indicators, like the time spent in
every ModSecurity phase.

Brute Force Attack Detection

Brute force attack detection is conceptually similar to the approach used to detect denial of
service attacks. You keep track of the authentication failures and you react when you feel an
attack is taking place. Performance-wise, brute force detection uses less resources, because
the rules only have to work when authentication takes place.

To start, you need to understand how authentication failure manifests, because the condi-
tion will be different for every application. You learn that by using the application, recording
all traffic to the logging script, and performing both successful and unsuccessful authentica-
tion. Your goal is to write a rule that will trigger on a failure, but not on success.

Lets assume that we're dealing with an application that uses the URL /login.php for all
authentication requests. On success, the application redirects the user to /index.php. On

142 Chapter 8: Persistent Storage

failure, the application redirects back to /login.php, asking the user to try again. Our brute
force attack detection rule could thus begin as follows:

<Location /login.php>
Check for authentication failure
SecRule RESPONSE_HEADERS:Location "@endsWith login.php" \
"i1d:9000,phase:5,pass,t:none,log,msg: 'Failed authentication'"
</Location>

Once we verify that this works as expected, we can move on to managing the counters. Let’s
start with the IP collection first. The following rule will keep a per-IP-address counter and
alert only after seeing 25 authentication attempts, at which point it will clear the counter
and start over:

<Location /login.php>
Check for authentication failure, maintaining
a counter that keeps track of how many failures were
SecRule RESPONSE_HEADERS:Location "@endsWith login.php" \
"id:9000,phase:5,pass,t:none,log,\
msg: 'Multiple authentication failures from IP address',\
setvar:IP.bf counter=+1,\
chain"
SecRule IP:bf counter "@ge 25" t:none,setvar:!IP.bf counter
</Location>

What we really want to do is block access for a period of time when too many authentica-
tion attempts are seen. We can do that with an additional flag and a rule that checks for it, as
follows:

<Location /login.php>
Enforce an existing IP address block
SecRule IP:bf block "@eq 1" "id:2000,phase:2,block,\
msg:'IP address blocked because of suspected brute force attack'"

Check for authentication failure
SecRule RESPONSE_HEADERS:Location "@endsWith login.php" \
"id:9000,phase:5,pass,t:none,log, \
msg: 'Multiple authentication failures from IP address',\
setvar:IP.bf counter=+1,\
chain"
SecRule IP:bf counter "@ge 25" "t:none,\
setvar:IP.bf block=1,\
setvar:!IP.bf counter,\
expirevar:IP.bf_block=3600"
</Location>

And there we have our brute force detection rules, which will block anyone who misbehaves
for one hour. Now, let’s implement another layer of brute force attack defense, keeping track

Brute Force Attack Detection 143

of the per-username authentication failures. This is possible, but with some restrictions, as
you'll soon see.

For the second layer of defense, we need a place to store the second counter, of which we
need to keep track no matter which IP address is used for access. It’s only natural to use
the USER collection, which was designed for that sort of thing—that is, for keeping track of
information on a per-user basis:

<Location /login.php>
Enforce an existing IP address block
SecRule IP:bf block "@eq 1" \
"id:2000,phase:2,deny,\
msg: 'IP address blocked because of suspected brute force attack'"

Retrieve the per-username record
SecAction id:2001,phase:2,pass,nolog,setuid:%{ARGS.username}

Enforce an existing username block
SecRule USER:bf block "@eq 1" \
"id:2002,phase:2,deny,\
msg: 'Username %{USER.key} blocked because of suspected brute force attack'"

Check for authentication failure and increment counters
SecRule RESPONSE_HEADERS:Location "@endsWith /login.php" \
"id:9000,phase:5,pass,t:none,nolog,\
setvar:IP.bf counter=+1,\
setvar:USER.bf_counter=+1"

Check for too many failures from a single IP address
SecRule IP:bf counter "@ge 25" \
"id:9001,phase:5,pass,t:none,\
setvar:IP.bf block=1,\
setvar:!IP.bf counter,\
expirevar:IP.bf block=1800"

Check for too many failures for a single username
SecRule USER:bf counter "@ge 25" \
"id:9002,phase:5,pass,t:none,\
setvar:USER.bf block=1,\
setvar: !USER.bf counter,\
expirevar:USER.bf block=1800"
</Location>

This example uses a user-supplied value (whatever’s in the username parameter) as a collec-
tion key. In such situations, you should always check that the user-supplied data is safe.
You'll find more information about the dangers of using user-supplied data in the rest of
this chapter.

144 Chapter 8: Persistent Storage

Session Management

Session management is one of the more fun aspects of ModSecurity, and it’s an area in
which ModSecurity truly can be useful. The reason is simple: unlike with other methods,
sessions allow you to understand and monitor in practice what one single user does. The
usefulness of session tracking will vary depending on what you're protecting, but it’s best
used with applications that use sessions to enable users to establish a “relationship” with
the application. Because sessions are required to use an application in a meaningful way,
adversaries are compelled to use them, too, and that makes monitoring easier.

Initializing Sessions

Before you start to think about session initialization, think about how many applications
you have on the same server. If you have more than one, you must create a separate applica-
tion namespace using the SecWebAppId directive. Even if you have only one application, it
doesn’t hurt to use SecWebAppId, because it causes the application ID to be recorded in audit
logs. Over time, you may add more applications, in which case it would be useful to know
which audit log entries belong to which application.

To initialize a session, you need to do two things:

Extract session token from request
Most applications use cookies to transmit session tokens. Session cookies’ names
vary, but they should be easy to identify, because they usually contain a large,
random-looking string (e.g., 64c24d4e35dc753cd085ca574def4131). A small number
of applications embed session tokens in their URLs, and those are even easier to
identify, because the large string can be seen in your browser’s URL bar.

Configure sufficient session lifetime

ModSecurity collections have a default lifetime value of 3,600 seconds, but that’s too
short for sessions, which may remain active for hours under normal circumstances.
Some faulty applications might even not impose a limit on session duration. To be
able to monitor sessions throughout their lives, you need to choose a timeout value
that is at least as long as the duration of the longest possible application session.
In most cases, however, you should aim for the SESSION collection to remain alive
for several times the maximum duration of the application session, because that will
allow you to perform reliable session blocking. The examples in this section will use
48 hours (172,800 seconds) as the SESSION collection timeout value.

To initialize a session from a cookie, you first need to identify the correct cookie. Look at
the following request that contains session information:

GET /index.php HTTP/1.1
Host: example.com

Session Management 145

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:47.0) Gecko/20100101 <
Firefox/47.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Cookie: PHPSESSID=64c24d4e35dc753cd085ca574def4131

I've emphasized the session cookie, and you can see that it’s easy to identify the session
token. In your effort to extract the session token, you won't have to deal with the request
header directly. Because ModSecurity parses inbound cookies, you'll be able to retrieve it
by name using the REQUEST_COOKIES variable. Session initialization is thus as simple as the
following:

Initialize SESSION from PHP session token

SecRule REQUEST_COOKIES:PHPSESSID "!@rx ~$" \
"id:1000,phase:1,pass,nolog,\
setsid:%{REQUEST COOKIES.PHPSESSID},\
setvar:SESSION.TIMEOUT=172800"

It is advisable, however, to verify session tokens before you use them as collection keys.
Anything user-supplied should be validated first, because you never know what you’ll
get. For all you know, an attacker may try to bypass your session defenses by submitting
multiple session cookies. Also, if the token is invalid, then it probably won’t be recognized
by the application, in which case you probably don't have any reason to use it either.

In the following example, we first perform the necessary checks (and block if something
suspicious is discovered), then use the value of the session token to initialize the SESSION
collection:

Check that we have at most one session token
SecRule &REQUEST_COOKIES:PHPSESSID "@gt 1" \
"id:1000,phase:1,block,log,msg: 'More than one session token'"

Catch invalid PHP session tokens
SecRule REQUEST COOKIES:PHPSESSID "!@rx ~[0-9a-z]{32}$" \
"id:1001,phase:1,block,log,msg: 'Invalid session token'"

Initialize SESSION from PHP session token

SecRule REQUEST_COOKIES:PHPSESSID "@rx ~[0-9a-z]{32}$" \
"id:1002,phase:1,pass,nolog,\
setsid:%{REQUEST COOKIES.PHPSESSID}"

Set the default timeout value for new records

SecRule SESSION:IS NEW "@eq 1" \
"id:1003,phase:1,pass,nolog,\
setvar:SESSION.TIMEOUT=172800"

146 Chapter 8: Persistent Storage

If your application uses URI-based session tokens, head to the section called “Capturing
Data” in Chapter 6, where I give a complete example showing how to use the data capture
facility to extract session tokens from URIs.

Blocking Sessions

After the SESSION collection is initialized, blocking a session is a matter of setting a flag
(with the correct expiry time) and checking for it on all requests. You have seen this
technique earlier in this chapter. I describe the flag method, as well as several variations and
other blocking methods, in the section called “Advanced Blocking” in Chapter 9.

In addition to blocking sessions with ModSecurity rules, you should consider communicat-
ing with the application so that it too blocks the session or signs the user out. Signing out
the user can be as simple as proxying the current request to the sign-out page:

SecAction "id:2000,phase:2,proxy:/sign-out.php,log,msg:'Logging out current user'"

An alternative to using the proxy action is to write a Lua script that can then communicate
with an external system to achieve a similar effect. Some information on this approach is
available in the section called “External Blocking” in Chapter 9.

If you couple the signing out with a block on the user account (described in the section
called “Restricting Session Lifetime”), a potentially rogue user can be banned from the
application until an investigation can be carried out.

Forcing Session Regeneration

Blocking sessions might work well for security, but it isn't very user-friendly. If you use
session blocking alone, you may leave your users confused, because they won't be able to
continue to use the application and won’t know how to obtain a new session (i.e., close all
browser windows and restart the application). The solution to that problem is to generate
a new session for the user. There are two ways to achieve session regeneration, and T’ll
demonstrate both here.

Both approaches use header manipulation, which means that you'll need to use ModSecu-
rity in tandem with mod_headers. (At this point, you should probably go read the section
called “Integration with Other Apache Modules” in Chapter 9 before proceeding; there, I
explain how to get ModSecurity to collaborate with other Apache modules.)

The following code contains two mod_headers rules, each activated by setting an environ-
ment variable:

Neutralize the cookies containing disabled session IDs
RequestHeader edit Cookie "(?i)~(PHPSESSID)=(.+)$" "DISABLED $1=$2" \
env=DISABLE_INBOUND_SESSION

Blocking Sessions 147

Instruct browser to delete session cookie
Header always set Set-Cookie "PHPSESSID=;expires=Fri, 31-Dec-1999 00:00:00 GMT" \
env=DISABLE_OUTBOUND_SESSION

The first rule is activated by the DISABLE_INBOUND SESSION environment variable, after which
it renames inbound session cookies. When a session cookie is renamed, its no longer
a session cookie, but some cookie the value of which will be ignored. As a result, the
application will likely generate a brand-new session cookie.

The second rule is activated by the DISABLE_OUTBOUND_SESSION environment variable and
sends a command to the user’s browser to delete the session cookie (by using the same name
as the session cookie, with an expiry time in the past).

To maximize both security and usability, use both mechanisms in your rules:
delete the session cookie of a session youre deciding to block (by executing
setenv:DISABLE_OUTBOUND_SESSION in any phase except phase 5), and suppress inbound
session cookies of the sessions that have previously been blocked (by executing
setenv:DISABLE_INBOUND_SESSION in phase 1 or in phase 2).

Restricting Session Lifetime

Because sessions in today’s web applications function as temporary passwords, it’s impor-
tant to cancel them as soon as they’re not needed. Two mechanisms are typically used to do
so:

Inactivity timeout
When a session isn’t used for a period of time, it’s reasonable to assume that it has
been abandoned. Allowing such sessions to remain active only increases the danger
of them being reused by someone other than the original user.

Session duration timeout
You should also put an absolute limit on session duration. A very long session life
span is unusual and may be an indication of automated activity or of a bad guy trying
to extract as much information as possible from a hijacked session.

Here’s what we need to do to implement the two limits:

1. Record the last time a session was used. As you may recall from earlier sections,
whenever a collection record is persisted, its LAST_UPDATE_TIME variable is updated.
We need that value. Therefore, to force session records to be persisted, we'll use the
same approach as we used with the IP collection: increment an arbitrary variable on
every request.

2. Now that we have access to LAST_UPDATE_TIME, we can check it on every request to
ensure that it hasn’t been too long since the previous request.

148 Chapter 8: Persistent Storage

3. All collections have the CREATE_TIME variable, which we’ll use to enforce maximum

session duration.

We'll use the following Lua rule (placed in the check session.lua file) to check those two
conditions:

function main()

end

-- Retrieve session key
local key = m.getvar("SESSION.KEY");

-- If there's no key there's no session,
-- so return without a match.
if (key == nil) then
return nil;
end

-- Retrieve CREATE TIME
local createTime = m.getvar("SESSION.CREATE TIME");

-- If the session was created more than 8
-- hours ago, trigger a match
if (os.time() - createTime > 28800) then
-- Match
return "Session older than 8 hours:
end

.. key;

-- Retrieve LAST_UPDATE_TIME
local lastUpdateTime = m.getvar("SESSION.LAST UPDATE TIME");

-- Check for lastUpdateTime (new sessions do not have this value)
if (not lastUpdateTime) then
return nil;
end
-- Check for a period of inactivity
if (os.time() - lastUpdateTime > 600) then

-- Match
return "Session inactive for more than 10 minutes ("
.. (os.time() - lastUpdateTime) .. "s):" .. key;
end
-- No match

return nil;

Because this particular feature is more complex than your average rule, 'm going to put
all the required rules together in the following self-contained example, which combines ev-

Restricting Session Lifetime

149

erything we've discussed about session initialization, collection timeouts, session inactivity
detection (the Lua rule), session blocking, and header manipulation:

Check that we have at most one session token
SecRule &REQUEST COOKIES:PHPSESSID "@gt 1" \
"i1d:1000,phase:1,block,log,msg: ‘More than one session token'"

Catch invalid PHP session tokens
SecRule REQUEST COOKIES:PHPSESSID "!@rx ~[0-9a-z]{32}$" \
"id:1001,phase:1,block,log,msg: 'Invalid session token"'"

Initialize SESSION from PHP session token

SecRule REQUEST COOKIES:PHPSESSID "@rx ~[0-9a-z]{32}$" \
"id:1002,phase:1,pass,nolog,\
setsid:%{REQUEST_COOKIES.PHPSESSID}"

Set the default timeout value for new SESSION records

SecRule SESSION:IS NEW "@eq 1" \
"id:1003,phase:1,pass,nolog,\
setvar:SESSION.TIMEOUT=172800"

Check for expired session

SecRule SESSION:expired "@eq 1" \
"id:1004,phase:1,redirect:/session-timeout.html,log,\
setenv:DISABLE_INBOUND SESSION,\
setenv:DISABLE_OUTBOUND SESSION"

Check session inactivity and duration

SecRuleScript check session.lua \
"id:1005,phase:1,redirect:/session-timeout.html,log,\
setenv:DISABLE_INBOUND SESSION,\
setenv:DISABLE_OUTBOUND SESSION,\
setvar:SESSION.expired"

Increment the session counter
SecRule REQUEST FILENAME "!@rx \.(jpg|png|gif|js|css|ico)$" \
id:1006,phase:1,pass,nolog,setvar:SESSION. counter=+1

Neutralize cookies containing disabled session IDs
RequestHeader edit Cookie "(?1i)~(PHPSESSID)=(.+)$" "DISABLED $1=$2" \
env=DISABLE_INBOUND_SESSION

Instruct browser to delete the session cookie
Header always set Set-Cookie "PHPSESSID=;expires=Fri, 31-Dec-1999 00:00:00 GMT" \
env=DISABLE_OUTBOUND_SESSION

150 Chapter 8: Persistent Storage

Detecting Session Hijacking

Session hijacking is a potentially devastating attack, often executed as the next step after
a successful XSS attack. Once the attacker obtains a session token, he or she can assume
the identity of the original user. Although it isn’t possible to detect and prevent session
hijacking 100 percent reliably, a few defenses can prove to be highly effective. Before you
resort to stateful session monitoring as a measure against session hijacking, however, you
should verify that you've done everything you can to secure the session cookies; if you make
them safe from compromise, then session hijacking isn’t possible. (I'll discuss the necessary
session cookie rewriting in the section called “Integration with Other Apache Modules” in
Chapter 9.)

Our session hijacking detection measures are going to focus on two pieces of information:

Session IP address
Sessions aren't attached to IP addresses; anyone with knowledge of the session token
is allowed to participate in a session. That said, the IP address to which the session
was initially assigned (on the first request) will in many situations remain the same
throughout a session. For example, a user accessing an application from his or her
workstation attached to the internal network isn’t likely to change his or her IP
address. That’s probably the best-case scenario.

When it comes to Internet users and roaming users, a change of IP address is
possible, and you can never be quite sure whether a hijacking is taking place. People
using their smartphones seamlessly switch from their mobile connections to Wi-Fi
networks, and with every switch there’s an IP address change. However, it’s rare to
roam from one country into another, so the IP address may change, but the GeoIP
Country usually remains the same.

Also note that it’s possible for the attacker and the victim to have the same IP address
as far as youre concerned. That could happen, for example, if they’re behind the same
proxy or a network address translation (NAT) system.

Ultimately, the value of this detection mechanism will depend on your user base. My
advice is to try the mechanism out as a warning system initially and see if it produces
false positives.

Session user-agent
Although it’s possible as noted that the session IP address will change, it’s far less
likely that the user agent identification will. If you start a session in one browser,
it’s unlikely that you’ll finish it in another—unless you hijack someone’s session, that
is. Research carried out by the Electronic Frontier Foundation (EFF) indicated that
one in about 1,500 users have the same User-Agent request field.! Checking that

1 Tracking by user agent (EFF, retrieved 30 December 2016)

Detecting Session Hijacking 151

https://www.eff.org/deeplinks/2010/01/tracking-by-user-agent

the user agent identification remains the same across all session requests is thus a
decent detection mechanism. It’s also a mechanism that can be easily defeated by a
determined attacker who knows that it exists and who can somehow uncover the
victim’s own identification string (with a bit of social engineering, for example).

Putting that lengthy discussion aside, here’s how to store the original IP address, geographic
information, and User-Agent values into a previously established session collection and
check them on subsequent requests:

Initialize GeoIP database and look up IP address
SecGeoLookupDB /usr/local/modsecurity/var/GeoIP.dat
SecRule REMOTE_ADDR "@geolLookup" "id:1000,phase:1,nolog,pass"

Generate a readable hash out of the User-Agent

request header and store it in TX.uahash

SecRule REQUEST HEADERS:User-Agent "@unconditionalMatch" \
"id:1001,phase:1,pass,t:none,t:shal,t:hexEncode,nolog,\
setvar:TX.uahash=%{MATCHED VAR}"

Initialize SESSION, storing a hash of the User-Agent
value, as well as the originating IP address.
SecRule SESSION:IS NEW "@eq 1" \
"id:1002,phase:1,pass,nolog,\
setvar:SESSION.uahash=%{TX.uahash},\
setvar:SESSION.ip=%{REMOTE_ADDR},\
setvar:SESSION. country=%{GEO.COUNTRY_CODE},\
skipAfter:END_SESSION_CHECK"

SecRule SESSION:country "!@streq %{GEO.COUNTRY CODE}" \
"id:1003,phase:1,pass, \
msg: 'Possible session hijacking: Expected country code \
%{SESSION.country} but got %{GEO.COUNTRY_CODE}""

SecRule SESSION:ip "!@streq %{REMOTE_ADDR}" \
"id:1004,phase:1,pass,\
msg: 'Possible session hijacking: Expected session IP address \
%{SESSION.ip} but got %{REMOTE ADDR}'"

SecRule SESSION:uahash "!@streq %{TX.uahash}" \

"id:1005,phase:1,pass,\

msg: 'Possible session hijacking: Expected session User-Agent hash \
%{SESSION.uahash} but got %{TX.uahash}""

SecMarker END_SESSION CHECK

There’s nothing in these rules that you haven't already seen; they use a combination of the
techniques already covered in this chapter.

152 Chapter 8: Persistent Storage

User Management

When it comes to persistent state, user management is the final piece of the puzzle. By
following individual users, you come as close as possible to using the same data model
applications do. We've already used the USER collection in this chapter to keep track of
authentication attempts. Now, we're going to see if it's possible to detect users as they sign
in and out. (Of course it is!) If we manage to detect those two events, we might be able to
associate each session with a user account and use that information to initialize the USER
collection.

Keep in mind that tracking users in ModSecurity isn't going to be an exact science. You have
to work with the information you have available, which means that youre going to have to
rely on many assumptions—some of which may not be true. That will be just fine, so long as
you use the user management facilities with that unreliability in mind.

Detecting User Sign-In

The work we'll need to perform to detect a sign-in event is just the opposite of what we did
to detect brute force attacks against authentication. I'll base the examples in this section on
the assumption that we're dealing with an application for which the sign-in form is located
at /login.php and that the application redirects back to the home page (/index.php) when
authentication is successful. If you recall, in the case of failed authentication, the redirection
was back to the same /login.php page.

Initialize session based on the session ID in the request. We
skip this step when authentication is taking place because then
it's possible to have two sessions on a single HTTP transaction,
and ModSecurity doesn't support that.
SecRule REQUEST FILENAME "!@streq /login.php" \
"id:1000,phase:1,pass,nolog,chain”
SecRule REQUEST_COOKIES:PHPSESSID "@rx ~([0-9a-z]{32})$" \
"setsid:%{REQUEST_COOKIES.PHPSESSID}"

<Location /login.php>
First try to find a new session cookie in the response headers. We
do this because some applications set a new session ID after
authentication (a best practice).
SecRule RESPONSE_HEADERS:Set-Cookie "@rx PHPSESSID=([~;]+)" \
"id:9001,phase:5,pass,nolog,capture,setvar:TX.SESSIONID=%{TX.1}"

If that fails, accept the session cookie from the request.
SecRule &TX:SESSIONID "@eq 0" \
id:9002,phase:5,pass,nolog,chain
SecRule REQUEST COOKIES:PHPSESSID "@rx ~([0-9a-z]{32})$" \
capture,setvar:TX.SESSIONID=%{TX.1}

User Management 153

In case of successful authentication, create a new session
and associate the authenticated username with it.
SecRule REQUEST METHOD "@streq POST" \
"id:9000,phase:5,pass,log,\
msg:'Initializing a new session after successful login',\
logdata:%{TX.SESSIONID},chain”
SecRule RESPONSE_HEADERS:Location "@endsWith /index.php" chain
SecRule &TX:SESSIONID "!@eq 0" \
"setsid:%{TX.SESSIONID},\
setvar:SESSION.user=%{ARGS.username},\
setvar:SESSION. TIMEOUT=2592000"
</Location>

The main rule in the example is rule 9000, which runs in the last processing phase to
monitor for successful authentication. That’s relatively straightforward: we watch for POST
requests (for the sign-in URL only, via the <Location> tags) and trigger on the redirection
that happens only when authentication is successful. When everything is aligned, we initial-
ize a new session and associate the just-authenticated username with it.

Rules 9001 and 9002 are necessary to handle the change of session ID after authentication,
which is a best practice designed to counter session fixation.? In rule 9001, we look for a
new session ID; if there isn't one, then in rule 9002 we fall back to the session ID supplied in
the request.

Finally, rule 1000 is necessary to work around ModSecurity’s inability to reinitialize collec-
tions. Normally, we always initialize a session as early as possible with the session ID from
the request. However, if we do that here and the application sends a new session ID after
authentication, we won’t be able to do what we need to. Thus, for the authentication URL
only, we suspend session creation until we're sure we have the correct session ID.

Warning

Look at the previous example carefully and try to answer what will happen if
the sign-in function receives two (different) username parameters. Do you think
it’s possible for the application to choose one of those parameters while the rules
choose the other? If that happens, the rules may end up associating the session
with the wrong user account. A best practice is to use a positive security model to
verify every aspect of the entire sign-in operation, as discussed in the section called
“Virtual Patching” in Chapter 9.

2 Session fixation attacks occur when attackers first create a new application session then trick victims (usually via social engineering) to reuse
the session ID. After authentication, attackers can hijack user sessions because they already know their session IDs.

154 Chapter 8: Persistent Storage

Detecting User Sign-0ut

Detecting the sign-out function is much easier, because the action is rarely condition-
al. In the following example, assume an application in which it’s sufficient to visit
the /signout.php page in order to sign out of the application:

<Location /signout.php>

Disassociate user from session

SecAction id:9000,phase:5,pass,nolog,setvar: I SESSION.KEY
</Location>

When were on the sign-out page, we simply remove the session from our collection and
trust the application to remove the corresponding session cookie.

Summary

Now that you've worked through this persistence chapter, I hope that you understand why I
was so excited about this aspect of ModSecurity. The persistent storage facility is the feature
that quite literally adds a completely new dimension to ModSecurity: that of time. With the
ability to track external parties over time and correlate events, you gain a far more useful
tool in ModSecurity.

In the next chapter, aptly named Practical Rule Writing, we'll tie together everything you've
learned so far by discussing a number of practical issues that you'll encounter in your
everyday life with ModSecurity.

Detecting User Sign-Out 155

9 Practical Rule Writing

This chapter is dedicated to the many practical aspects and requirements of rule writing.
We go beyond looking at features in isolation to discuss what we can achieve when multiple
features are used together. This is the chapter in which, finally, everything comes together.

Whitelisting

Rulesets are usually written to single out unusual requests, but it turns out that most deploy-
ments actually require some “unusual” requests to operate properly. The more complex the
deployment, the more likely it is that you'll need to use whitelisting. In most cases, there will
be at least one crude monitoring script that’s practically indistinguishable from some other
Perl script that will be attacking you. In others, you might have outsourced security testing
to a third party, and you won't want your rules to interfere with their work. Finally, even if
none of that applies, you won’t be able to avoid the unexpected: Apache sending requests to
itself.

In all those cases, you need a mechanism that allows certain requests to bypass your ruleset
completely. We call this whitelisting. In a general sense, we use this term when we talk about
rules that actively promote (allow) types of requests we want. For example, later in this
chapter, we'll use the term whitelisting to refer to the practice of writing rules that allow only

known to be good parameters for certain scripts. Anything not conforming to what’s good
will be forbidden.

Whitelisting Theory

You have to be very careful when writing whitelisting rules, because each addition to your
ruleset creates a bond of trust. If you make a mistake, you can end up with a hole in your
ruleset that can be used by your adversaries. You should ask yourself three questions:

How do I know the request is from the person or device I want to whitelist?
In the ideal case, the remote client will authenticate itself in some way. For example,
allowing requests that arrive from known, good IP addresses is an easy and secure so-

157

lution. This is something you can easily do with ModSecurity, and even with Apache
itself. Other possibilities include using client certificates and basic authentication
credentials.

Is there anything specific about the requests I want to whitelist?

You may have established that requests are coming from a source you can reasonably
trust, but it’s still a good idea to narrow down the attack vector as much as possible.
You should think about your rules as walls that defend you from attackers; when you
write rule exclusions, you create holes in these walls. Therefore, it’s a best practice
to keep the hole as small as possible. Observe, over time, the requests you want to
whitelist. Is there a recurring pattern? For example, most monitoring requests are
identical. In other cases, the requests will be restricted to a part of your web site and
will have predictable parameters.

What changes do I want to make to the default configuration?
This last question pertains to the action you want to take after you decide definitely
that you want to go through with whitelisting. The easiest thing to do is simply use
the allow action to let the remote party continue unconditionally, but are you really
comfortable with giving that party unrestricted access? A better solution might to be
to switch the rule engine to detection mode. You won't regret it, so long as you get
false positives only occasionally.

In the next section, I'll discuss the placement of whitelisting rules, followed by several
simple examples, then finish with the rule that you’ll need to silence the Apache web server
itself.

Whitelisting Mechanics

Whitelisting rules need to be executed before all your other detection rules, which means
that they should always follow your configuration and system rules. It’s a good idea to have
a special file for this category of rules alone to make them easy to find with a simple glance
at the list of your configuration files.

Most whitelisting rules look at the remote address first, so let's do that now. Let’s assume
that there are two trusted employees to whom you want to give unrestricted access to
your web site. The IP addresses of their workstations are 192.168.1.1 and 192.168.15.7. The
corresponding whitelisting rule will be as follows:

SecRule REMOTE_ADDR "@ipMatch 192.168.1.1,192.168.15.7" \
id:1000,phase:1,allow,t:none,nolog

As previously discussed, you generally should avoid using the allow action; a better idea
instead is to switch the rule engine to detection-only mode:

158 Chapter 9: Practical Rule Writing

SecRule REMOTE_ADDR "@ipMatch 192.168.1.1,192.168.15.7" \
id:1000,phase:1,pass,t:none,nolog,ctl:ruleEngine=DetectionOnly

In this rule, I replaced allow with pass, and added an invocation of the ctl action with an
instruction to change the operating mode of the rule engine.

Note

If you need to list many different IP addresses, the alternative operator
@ipMatchFromFile allows you to list IP addresses in a separate file. Both operators,
@ipMatch and @ipMatchFromFile, support CIDR notation.

Granular Whitelisting

Although every invocation of the allow action interrupts the phase in which it runs, you can
choose whether and how other phases in the same transaction are affected. The allow action
has an optional parameter, and the following rules apply:

Interrupt current phase and skip all other inspection phases
If you invoke allow without a parameter, then regardless of the current phase, all
inspection phases will be skipped.

Interrupt current phase only
When allow is invoked with phase as a parameter (allow:phase), it restricts the effect
of this action to the current phase.

Interrupt current phase and any remaining request phase
When allow is invoked in phase 1 with request as a parameter (allow:request), the
processing of phase 1 will be interrupted and phase 2 will be skipped completely. The
processing will continue with the first response phase (phase 3).

Full Whitelisting Example

Earlier, I mentioned how Apache talks to itself. Because it’s a situation that every ModSecu-
rity administrator will have to deal with, I'll use it as an example to demonstrate how to
implement whitelisting.

First, let’s look at the complete request we need to ignore:

::1 - - [26/0ct/2009:16:01:06 +0000] "OPTIONS * HTTP/1.0" 200 - <
"-" "Apache (internal dummy connection)"

What can we deduce from the example log line? Note the following points:

1. The first thing that you will notice about this request is that it always arrives from
the server itself. In the example, the remote address is ::1 (IPv6 localhost). In other

Granular Whitelisting 159

cases, you'll see 127.0.0.1 there. We can use this information to restrict the source of
requests that our rule will take into account.

2. The request is always the same and involves the OPTIONS request method. This is even
more helpful, because it allows us to write a rule that only matches that specific usage.

3. The user agent identification is the same for all requests.

Using the obtained information, we can write a robust and reasonably safe rule:

SecRule REQUEST LINE "@streq OPTIONS * HTTP/1.0" \
"id:1000,phase:1,allow,t:none,log,\
msg: 'Allowing wake-up request from Apache itself',\
chain”
SecRule REMOTE_ADDR "@ipMatch ::1,127.0.0.1" t:none

I used only the first two facts for my rule, because I felt that they allow me to uniquely
identify a request and that no more narrowing is needed. Besides, the User-Agent request
header is trivial to subvert.

Virtual Patching

In the ideal world, when you identify a flaw in an application, you get the developers to
fix the problem. You then get the developers to examine the entire code base for similar
problems, fixing other flaws that they discover. In the real world, however, there are many
obstacles to fixing problems in this way:

No access to source code
When youre running third-party applications or using third-party libraries, you
don’t have a choice. You're at the mercy of the vendors to deal with the issues. Many
vendors won't have the same sense of urgency; in some cases, months and even years
may pass before an issue is fixed.

No legal right to change source code
When you outsource your development, you may have access to the source code, but
you may not be able to do anything with it until the contract with the developer
expires. At best, you can identify the location of the problem and assist the developer.

Changing source code prohibitively expensive
Let’s say there are no legal issues in fixing the problem in an application for which
you have the source code. If youre currently using the stock version (e.g., the one
that comes with the operating system), to fix a flaw requires an additional packaging
and distribution of the new package, and you also need to continue to produce new
application versions until the original flaw is fixed upstream.

Lack of expertise to fix flaw
All the source code in the world won't mean a thing if you lack the expertise needed
to devise a fix. Employing a random developer won’t cut it; you need access to a

160 Chapter 9: Practical Rule Writing

senior developer with security expertise who already understands the application.
Otherwise, you risk the danger of breaking the application and creating a bigger
problem. Lack of expertise especially can be a problem especially when the flaw is in
a legacy application that’s long been forgotten. How on earth are you going to find
someone to not only fix the problem but also build a complete development, staging,
and deployment environment from scratch?

In the best-case scenario for fixing problems in the source code, the flaw will be in a
critical internal application developed by an agile experienced team with security expertise.
However, even in that case, there may be issues with timing and with costs:

« Should you disrupt a development cycle halfway?

« How will that affect the quality of the release?

« Will subsequent releases (and features) be affected?

« How will the changes have an impact on the business?

« Can you roll out an update to the application?

o Is the production version a freeze during the critical time of the year?
o Is the key developer out sick or away on a vacation?

« Do you dare make changes without him or her?

« Are there any bigger fires to deal with?

Virtual patching presents a way to deal with a known problem in a web application—almost
any application—without actually touching the application itself. Because most web applica-
tion traffic uses standard data transport protocols, it’s relatively easy to reroute information
flow and install a policy capable of preventing the exploitation. This technique is also
sometimes referred to as just-in-time patching, or dynamic patching.

The principal advantage of virtual patching is that it’s very effective and quick to deploy.
Assuming you've laid the foundation for virtual patching in advance, it can take literally
minutes to mitigate a problem. Compare that to the days, weeks, and months that it might
take to fix the same problem in the source code. In addition, if you neutralize a problem
in this way, you relieve pressure on your developers, giving them enough time to fix the
problem properly and roll out the fix in the next scheduled software update.

Some application security practitioners are concerned that the use of virtual patching, as
effective as it can be, contributes to the culture of not caring about security flaws and
leaving them to linger in the source code. That’s a legitimate concern, but the culture in an
organization ultimately will be exactly what the people in charge want it to be. The truth is
that virtual patching is an operational tool, which shouldn’t affect how problems are treated
on the development level.

Virtual Patching 161

Vulnerability Versus Exploit Patching

There are two ways in which virtual patches can be written: vulnerability-oriented and
exploit-oriented. Vulnerability-oriented virtual patches are designed to address the core
issue; you work to understand the problem and write a policy that essentially does the
work that the vulnerable application should have done—typically, adding the required input
validation. This approach is also known as the positive security model or whitelisting. You
make no attempts to determine whether something is unsafe. Instead, you just figure out
what is safe (which is much easier), and you then write the policy to implement just that.

Exploit-oriented patches focus on the known exploits instead. No attempts are made to
understand the root cause; the focus is on trying to catch the attacks instead. This approach
is also known as the negative security model or blacklisting. Exploit-oriented patches are not
as effective as vulnerability-oriented patches, because they will fail if someone reworks an
existing exploit to be different yet remain effective. Similarly, such defense measures will fail
if someone discovers another way to exploit the underlying problem.

I prefer to use the term virtual patching only for policies that employ the whitelisting
approach.

Failings of Exploit Detection

Let’s assume we're dealing with a web application that’s vulnerable to SQL injection. We'll
say that the vulnerable page has a parameter called articleid, which is supposed to be
just an integer, but that no checks are made on what the supplied value actually contains.
Normally, youd use the page with a URL such as this one:

http://www.example.com/showArticle.jsp?articleid=4

However, there’s nothing preventing you from adding a bit of SQL to the parameter and
getting it to execute in the site’s database:

http://www.example.com/showArticle.jsp?articleid=4;«
drop%20table%20articles

If you were to circulate this “exploit,” someone might write a rule that focuses on detecting
the SQL keywords used in it:

SecRule ARGS:articleid "@rx (drop|table)" \
id:2000,phase:2,block,t:none,t:lowercase,t:compressiWhitespace,log

This rule creates an imperfect net that catches some attacks, but not necessarily all of them.
Someone with enough time on his hands could perform many tests and work methodically
to reverse-engineer your rule by sending varying requests. In the end, he might find a

162 Chapter 9: Practical Rule Writing

way to bypass the rule. To illustrate this possibility, consider the following rule, which uses
evasion and which many databases will accept:

http://www.example.com/showArticle.jsp?articleid=4;0x44524F50%200x7461626c65%20artie
cles

If you want to be safe, write positive security patches, allowing only what you know to be
safe. Let’s try to do that:

Allow only requests whose "articleid" parameters match the expected format
SecRule ARGS:articleid "!@rx ~[0-9]{1,10}$" \
"id:2000,phase:2,block,t:none, log"

This rule, being vulnerability-based, is a great improvement over the previous attempts.
The key difference is that now the attacker can try to use every SQL injection technique
available, but she’ll fail unless she can make the exploit payload be an integer. The attacker
won't be able to do that, and you’ll be safe. Or will you?

Impedance Mismatch

When you use the whitelisting approach to virtual patch creation, the attacker should no
longer be able to successfully attack the application. What he or she can do, however, is
attack the web application firewall—or, in our case, ModSecurity. If you look at the previous
rule carefully, you may realize that it depends entirely on the ability to correctly inspect the
articleid parameter.

A common attack technique is to use multiple parameters with the same name, with
some using a correct value and some containing exploit payloads, and hope that the
inspection device will allow the request after seeing one of the correct values. This technique
doesn’t work against ModSecurity, because when you use the named parameter syntax (e.g.,
ARGS:articleid), it inspects all parameters with that name.

What if the attacker changes the name of the parameter in some way to make ModSecurity
see it as a different name, while the target application sees it as the original name? Strictly
speaking, that shouldnt be possible. After all, we have standards that define how parame-
ter names are specified. In reality, however, it’s quite easy with some application servers,
because they will handle input in nonstandard ways.

PHP, for example, is quite liberal as to how it handles parameter names. It’s trying to be
helpful, correcting things it thinks are wrong, but it ultimately causes problems from a
security perspective. One thing it will do is ignore whitespace at the beginning of parameter
names. Take the following request, for example:

http://www.example.com/showArticle.jsp?%20articleid=4;drop%20table%20articles

Impedance Mismatch 163

You might be surprised to learn that the application would process the request as if you
used the parameter articleid without the space as the first character. Meanwhile, ModSe-
curity will process the parameter exactly as supplied, causing the virtual patch to fail. Back
to the drawing board!

Using the negative security mentality, you might want to detect parameters that have spaces
in them:

SecRule ARGS NAMES "@rx \s+" \
"1d:2000,phase:2,block,log,msg: 'Whitespace in parameter name'"

You don't want to only look for the whitespace at the beginning of parameter names,
because PHP will also convert whitespace inside parameter names, replacing it with under-
scores. Anyway, the approach in the previous rule would probably be good enough, assum-
ing youre not running any applications that actually have whitespace in the parameter
names. However, you shouldn't rely on that approach, because you don’t know all the weird
ways in which PHP will change parameter names. A positive security approach would be to
define what you consider to be normal—like the following rule, for example, which allows
only the characters you would normally expect in a parameter name:

SecRule ARGS NAMES "!@rx ~[-0-9a-zA-Z_.]+$" \
"id:2000,phase:2,block,log,msg: 'Invalid parameter name'"

That’s an improvement: now, if we accept a parameter name, we'll know exactly what it can
be.

Preferred Virtual Patching Approach

The preferred virtual patching approach is to cast a wider net and lock down the entire
script that exhibits the vulnerability you're patching. With the previously described vulnera-
bility in mind, consider the following group of rules:

<Location /index.php>
SecDefaultAction phase:2,t:none,log,deny

Validate parameter names
SecRule ARGS_NAMES "!@rx ~(articleid)$" \
"id:2000,phase:2,msg: 'Unknown parameter name: %{MATCHED VAR NAME}'"

Validate each parameter's cardinality
SecRule 8ARGS:articleid "!@eq 1" \
"id:2001,phase:2,msg: 'Multiple parameters: articleid'"

Validate parameter 'articleid’
SecRule ARGS:articleid "!@rx ~[0-9]{1,10}$" \

164 Chapter 9: Practical Rule Writing

"id:2002,phase:2,msg: 'Invalid parameter: articleid'"
</Location>

The preferred virtual patching approach is to use the following methodology:

1. Use the <Location> or <Directory> (preferred, but only works in embedded mode)
configuration containers, or any other sort of URI condition to focus on only a single
script or page.

2. Allow only known parameter names.

3. Check that each parameter appears only once (or as many times as needed).

4. Check that the value provided in each parameter matches what is desired.

Although my example demonstrates the concept on a script with only one parameter, the
same approach can be used with any number of parameters.

Note

After writing the first edition of this book, Ivan wrote a research paper to highlight
in more detail all the possible ways in which web application firewalls can be
evaded. This paper is useful not only for its coverage of generic evasion techniques
but also because it includes a section geared specifically to ModSecurity users.!

Whitelisting Rulesets

Building on the previous virtual patching example, we can take things one step further and
evolve the rules into a tight whitelisting ruleset. In this section, we’re no longer limiting
ourselves to a single URIL, and we'll also defend against advanced evasion methods that work
against reverse proxies.

It’s generally well understood that whitelisting is a very strong defense method. However,
though network firewalls do use whitelisting, people don’t write their web application
firewall rules this way. The main reasons are the perceived amount of work it takes to do it
properly and the dynamic nature of applications, which forces you to update the ruleset in
sync with application releases. It's hard to get around the latter problem, but the amount of
work is usually overestimated.

In fact, you don’t need to develop a holistic whitelisting ruleset; a partial whitelist often is
a reasonable compromise. Imagine an application exposed on the Internet. Users access it
and are immediately taken to a login page. After successful login, they have access to the
complex and dynamic application. It would be hard to develop a whitelisting ruleset for
the full application, but you can focus your efforts on protecting the most exposed part of
the application. Protecting the login page provides a real improvement in terms of security

1 Protocol-level evasion of web application firewalls (lvan Risti¢, 25 July 2012)

Whitelisting Rulesets 165

https://blog.ivanristic.com/2012/07/protocol-level-evasion-of-web-application-firewalls.html

without too much work, and it's simple compared to the effort it would take to protect the
entire application.

Let’s write a whitelisting ruleset for such an imaginary login page. It isn’t overly complicated,
but there are a few things to consider. I'll present the individual parts of the ruleset, which
you can then put together and adopt for your server.

Because we're writing a partial whitelist, we have to make sure an attacker can’t evade our
whitelist rules by manipulating the path somehow. As part of normal processing, the web
server (e.g., Apache) always will normalize the request URI. Because we want to be extra
sensitive here, we'll take the normalized REQUEST URI from the web server, transform it with
our own normalization routine, and then compare it to the original request URI stored in
REQUEST_URI_RAW. If there’s a difference between the original submission and the normalized
URI, then we might face an evasion attempt, and therefore we’ll deny access:

START whitelisting block for URI /login (rule IDs 3000-3499)

SecRule REQUEST URI "!@streq %{REQUEST URI RAW}" \
"id:3000,phase:2,deny,t:lowercase,t:normalizePathWin,log,msg: 'Path evasion «

attempt.'"

Next, we'll examine the request path. For this example, assume everything related to the
login page is stored in the /login path. Also apply the lowercase transformation to the
URIL; some backends are case-insensitive, and we want to make sure requests attempting
to exploit this behavior have to pass our whitelisting ruleset as well. If the request doesn’t
match the /login path prefix, we skip to the END_WHITELIST login marker. The following
parts of the complete recipe have to be put inside the block created between the skipAfter
action and this marker:

SecRule REQUEST URI "!@beginsWith /login" \
"id:3001,phase:2,pass,t:lowercase,nolog, skipAfter :END WHITELIST login"

SecMarker END WHITELIST login

The first property of the transactions we're validating is the HTTP method. We'll accept the
standard GET, HEAD, and POST methods, as well as the OPTIONS method. OPTIONS requests are
issued by various clients automatically to check out the functionality of the server. If you
don’t allow them, you'll get quite a few unnecessary alarms:

Validate HTTP method
SecRule REQUEST METHOD "!@pm GET HEAD POST OPTIONS" \
"id:3010,phase:2,deny,log,msg: 'Method %{MATCHED VAR} not allowed'"

Next, we'll inspect the request path in more detail:

166 Chapter 9: Practical Rule Writing

Validate request path
SecRule REQUEST FILENAME "@beginsWith /login/static/css" \
"id:3100,phase:2,pass,nolog,skipAfter:END_URIBLOCK WHITELIST login"
SecRule REQUEST FILENAME "@beginsWith /login/static/img" \
"id:3101,phase:2,pass,nolog,skipAfter:END_URIBLOCK WHITELIST login"
SecRule REQUEST FILENAME "@beginsWith /login/static/js" \
"id:3102,phase:2,pass,nolog,skipAfter:END_URIBLOCK WHITELIST login"
SecRule REQUEST FILENAME \
"@rx ~/login/(displayLogin|login|logout|)\.do$" \
"id:3103,phase:2,pass,nolog,skipAfter:END_URIBLOCK WHITELIST login"

If we land here, we are facing an unknown URI,
which is why we will respond using the 404 status code
SecAction "id:3199,phase:2,deny,status:404,1log,\

msg: 'Unknown URI %{REQUEST URI}'"

SecMarker END_URIBLOCK WHITELIST login

Our login page supports a series of URIs, and we want to make sure clients can request
only these predefined URIs. The whole block is constructed with the help of a series of
skipAfter actions. I primarily rely on the @beginsWith operator but employ the standard
regular expression check as well. The rules aren’t overly strict when it comes to static files;
anything within three different folders is permissible. That way, we won't have to update the
ruleset if a new image is deployed.

The situation is different with the dynamic URIs. Here, we want to make sure that were
allowing only a predefined list of actions. Note the use of the double anchor in the regular
expression and the REQUEST_FILENAME variable. This variable contains the URI without the
query string and thus is preferred in this situation, because the query string will be covered
in the next rule block. Rule 3199 marks the end of the URI validation block. The previous
rules all issued skips across 3199 down to the END_URIBLOCK WHITELIST login marker. This
means that every request arriving at 3199 has to be a request to an unknown URI, and we
can thus deny access in this rule.

Now, it’s time to look at the parameters, following the layout of the rules in the example
from the previous section—name, cardinality, and value:

Validate parameter names
SecRule ARGS NAMES "!@rx ~(username|password|sectoken)$" \
"id:3200,phase:2,deny,log,msg: 'Unknown parameter: %{MATCHED VAR NAME}'"

Validate each parameter's cardinality
SecRule &ARGS:username "@gt 1" \

"id:3300,phase:2,deny,log,msg: 'Parameter username submitted multiple times"'"
SecRule &ARGS:password "@gt 1" \

"id:3301,phase:2,deny,log,msg: 'Parameter password submitted multiple times'"

Whitelisting Rulesets 167

SecRule &ARGS:sectoken "@gt 1" \
"id:3302,phase:2,deny,log,msg: 'Parameter sectoken submitted multiple times'"

Check individual parameter values
SecRule ARGS:username "!@rx ~[a-zA-Z0-9.@-]1{1,32}$" \
"id:3400,phase:2,deny,log,\
msg: 'Invalid parameter format: %{MATCHED VAR NAME} (%{MATCHED VAR})'"
SecRule ARGS:password "@gt 128" \
"id:3403,phase:2,deny,log,t:1length,\
msg: 'Invalid parameter format: %{MATCHED VAR NAME} too long (%{MATCHED VAR} <
bytes)'"
SecRule ARGS:sectoken "!@rx ~[a-zA-Z0-9]{32}$" \
"id:3401,phase:2,deny,log,\
msg: 'Invalid parameter format: %{MATCHED VAR NAME} (%{MATCHED VAR})'"

Note

For simplicity, we're using the ARGS collection to retrieve parameters, which ignores
parameter origin. If you prefer to treat GET and POST parameters separately, you can
use ARGS_GET and ARGS_POST instead. When dealing with POST parameters, make
sure you put the rules in phase 2.

This whitelisting example is fairly elaborate, but it doesn’t cover every detail. However, I
think it represents a good balance between effort and an increase in security overall.

JSON Requests

JSON support is a fairly recent addition to ModSecurity that arrived with the 2.8.0 release.
When the JSON parser is enabled, individual variables embedded in a JSON request body
will be converted into ModSecurity variables. To enable the parser, you need to detect JSON
payloads in phase 1, just before request body processing begins, which is what the following
rule does:

SecRule REQUEST HEADERS:Content-Type "@beginsWith application/json" \
"id:1000,phase:1,pass,t:lowercase,nolog,ctl:requestBodyProcessor=JSON"

Now, as soon as the request body is received, it will be handed over to the JSON processor.
The parsing will happen in between phases 1 and 2. At the beginning of phase 2 (request)
we can check if the JSON payload was well-formed or if there have been any processing
errors. Add the following general rule, if you don’t yet have it in your ruleset:

SecRule REQBODY_ERROR "!@eq 0" \
"id:2000,phase:2,deny,log,msg: '%{REQBODY_ERROR MSG}'"

168 Chapter 9: Practical Rule Writing

Assuming the payload was well-formed, we can then access the individual parameters. To
illustrate how that works, let’s consider the following example of a JSON request body taken
from JSON RFC 4627:2

{
"Image": {

"Width": 800,

"Height": 600,

"Title": "View from 15th Floor",

"Thumbnail": {
"Url": "http://www.example.com/image/481989943",
"Height": 125,
"Width": "100"

}

"IDs": [116, 943, 234, 38793]

}

The JSON processor will make this data available within the standard ARGS collection using
the keys used in the data. We can access this the same way we would access standard
arguments, as shown in the following example:

SecRule ARGS:Image.Width "l@rx ~([0-9]+)$" "id:2001,phase:2,deny"
SecRule ARGS:Image.Height "l@rx ~([0-9]+)$" "id:2002,phase:2,deny"
SecRule ARGS:Image.Thumbnail.Height "!@rx ~([0-9]+)$" "id:2003,phase:2,deny"
SecRule ARGS:Image.IDs "lerx ~([0-9]+)$" "id:2004,phase:2,deny"
SecRule &ARGS:Image.Height "@gt 1" "id:2005,phase:2,deny"
SecRule &ARGS:Image.IDs "@gt 4" "id:2006,phase:2,deny"

As you can see, accessing the JSON data is straightforward. Writing rules thus is easy,
and it’s also possible to incorporate this factor into the whitelisting ruleset in the previous
section.

Note

Unfortunately, it isn’t possible to access the individual items of an array like the IDs
array in the example payload. A rule like the one with ID 2004 in the example will
always evaluate all items of the array in parallel. It thus will be executed four times
for the example payload.

IP Address Reputation and Blacklisting

Only two things are guaranteed for every HT TP request you get: you will have an IP address
and a port to work with. Even when everything else is wrong or broken, these two pieces of

2 The application/json Media Type for JSON (IETF, retrieved 30 December 2016)

IP Address Reputation and Blacklisting 169

https://www.ietf.org/rfc/rfc4627.txt

information can be retrieved from the TCP network level. At first, you might think that an
IP address isn’t worth much, but it’s surprising how much you can do with it:

« Using geolocation, you can determine a client’s geographic location.
 You can ban an IP address from your site forever.

 You can keep long-term information on an IP address in a local database and use it to
influence your policies.

o You can ask a remote fraud-detection service whether it believes the IP address is
“bad”

IP Address Blocking

Conceptually, blacklisting is performed in the same way as whitelisting. You keep a list of
IP addresses you don’t want to do business with, and you refuse requests that arrive from
them. There’s often a difference in the number of IP addresses that are used. Blacklists often
contain hundreds and even thousands of IP addresses, which means that you need to work
harder to maintain good performance.

Individual IP addresses and networks are easiest to blacklist with the help of the @ipMatch
operator. When you need to cover more addresses, you should assemble them into an
external file and integrate with the help of the @ipMatchFromFile operator or its shortcut
alias, @ipMatchfF:

SecRule REMOTE_ADDR "@ipMatchF blacklist.dat" \
"id:1000,phase:1,block,log,msg: 'IP address on blacklist

The file blacklist.dat contains one IP address or network per line. You can use CIDR
notation and you can enter comment lines as well, as follows:

Known Zeus botnet command servers
91.121.240.111
195.20.44.0/24

If youre concerned about performance, there’s a parallel matching alternative for IPv4
addresses. This is faster than the @ipMatch family of operators, but because @pm wasn’t
designed for matching IP addresses, you'll need to do some extra work to implement it
correctly. The problem is that the @m operator doesn’t understand pattern boundaries. If
you ask it to match “192.168.1.1% it will match it no matter where in the string pattern it
sits, which means that it will match “192.168.1.10” and “192.168.1.100” as well, to list just a
couple of the possible false positives.

The extra work I mentioned is needed to create artificial boundaries where theyre needed.
First, you need to create a new variable to keep the remote IP address, adding something in
front of the IP address and something at the end. I'll use a forward slash character:

170 Chapter 9: Practical Rule Writing

SecAction "id:1000,phase:1,pass,nolog,\
setvar:TX.REMOTE_ADDR=/%{REMOTE_ADDR}/"

The actual blacklisting is just a normal use of the @pmFromFile operator, but you use
TX:REMOTE_ADDR instead of REMOTE_ADDR:

SecRule TX:REMOTE_ADDR "@pmFromFile blacklist.dat" \
"id:1000,phase:1,block,log,msg: 'IP address on blacklist

The file blacklist.dat contains one IP address per line, with a forward slash character at
the beginning and end of every line:

/192.168.1.1/
/192.168.1.2/
/192.168.1.3/

Because we have the forward slash characters in both places (in the rule and in the file),
the matching will work as it should, without the previously described false positives. As a
matter of fact, now you can take advantage of the side effect, making the blacklisting of
entire segments easier. For example, if you want to match an entire class C address space
(256 IP addresses), you could have the following line in the file:

/192.168.1.

Geolocation

Geolocation is the identification of the geographic location of an HTTP client by means of
an IP address. The identification is done by performing a lookup against a database that
“knows” where every IP address belongs. The process is not 100 percent accurate and may
not work at all for some addresses.

ModSecurity supports geolocation through integration with the free GeoLite Country or
GeolLite City databases.? To start using this feature, first download the database and put
it somewhere on the local filesystem where ModSecurity can get to it. To obtain the
geographic location of someone whose IP address you have, you’ll need one configuration
directive and one rule:

Initialize GeoIP database
SecGeoLookupDb /usr/local/modsecurity/var/GeoIP.dat

Perform geolocation
SecRule REMOTE_ADDR "@geoLookup" \
"id:1000,phase:1,pass,t:none,nolog"

3 GeoLite legacy downloadable databases (MaxMind, retrieved 30 December 2016)

Geolocation 171

http://dev.maxmind.com/geoip/legacy/geolite/

You can afford to perform a lookup on every request, because the database is available
locally. It’s unlikely that performance will be an issue, even though the lookup is not cached.
From this point on, you can use geographic information in your rules. For example, to
detect access from outside Great Britain, write the following rule:

Forbid all foreign access
SecRule GEO:COUNTRY CODE3 "!@streq GBR" \
"id:1000,phase:1,block,log,msg: ‘Access from outside Great Britain'"

In practice, you’ll want to add the geographic information to the list of variables that
influence your rules and your policies. Here are a couple of ideas for how to use this
information:

Assign a risk score to each country
When deciding whether a request is an attack or whether to block, you can use the
risk score to sway your decision one way or another.

Know where your users are
Keep track of where your users are. If a user session changes country or if a user
“travels” a great distance in a short period of time, that may be an indication that his
or her account was compromised.

Implement defense conditions
The majority of your users may be in one or a few countries, but you normally don't
want to restrict access, because some users travel often. However, in extraordinary
circumstances (e.g., when youre under attack), you may want to lock down your
systems and allow access only from a small number of countries.

Real-Time Block Lists

A real-time block list (RBL) is an IP address reputation tool that can tell you whether an IP
address or domain name is bad. RBLs are most commonly used to fight email spam, but
they can be quite useful for web applications. After all, if you know that there’s a spammer
behind an IP address, do you really want that spammer in your application? In recent years,
we've seen the rise of RBLs designed to work with application security in mind.

Unlike geolocation, RBLs are usually accessed over the network. The upside is that there’s
usually zero maintenance. The downside is that there can be a significant performance
hit, depending on where the servers that power the RBL are located (relative to your own
servers). When I recently experimented with an RBL, I discovered that I had introduced
additional latency of about 400 ms. Because RBL lookups are performed over the DNS
infrastructure, there’s limited caching support, which means that not all requests will take
the latency hit. If youre planning on using RBLs in production, a best practice is to install

172 Chapter 9: Practical Rule Writing

a local caching DNS server (e.g., rbldnsd).# Because some lists are available for download,
with a local DNS server you solve the latency problem.

In ModSecurity, a lookup of an address against an RBL is performed with the @rbl operator:

Only allow the IP addresses cleared by multi.surbl.org
SecRule REMOTE_ADDR "@rbl multi.surbl.org" \
"id:1000,phase:1,block,log,msg:"'IP address denied by multi.surbl.org'"

If you get a match, that means that the IP address is listed in the RBL. You don’t have to
block immediately, but if you don't, you should store the information in a TX variable so that
you can refer to it later. I've found the following RBLs to be widely used:

« Spamhaus’
« SURBL®
« URIBL’

« Project Honey Pot®

Local Reputation Management

Every time you create a whitelist or a blacklist, you practice local reputation management.
Similarly, the various persistent storage techniques used to track IP addresses and applica-
tion sessions are part of the same concept, including the following:

Static network access control
Keep track of IP addresses that require special treatment, be it whitelisting or black-
listing. Using @ipMatchFromFile is the standard method, but you may want to look
into @pmFromFile for performance reasons, as discussed in the section called “IP
Address Blocking” earlier in this chapter. The disadvantage of the static approach is
that every change to the list requires a restart of Apache (even when the IP addresses
are kept in an external file and used with @ipMatchFromFile or @pmFromFile).

Local (internal) geographic and organizational information
For sites for which users are strongly clustered (e.g., internal applications used by
different departments and company groups), consider creating a local database for
geographic and organization lookups. Again, you can write the rules in any way, but
use parallel matching if there are too many IP addresses on the list.

4 rbldnsd: Small Daemon for DNSBLs (Michael Tokarev, retrieved 30 December 2016)
5 The Spamhaus Project (Spamhaus, retrieved 30 December 2016)

6 SURBL URI reputation data (SURBL, retrieved 30 December 2016)

T URIBL - Real-time URI Blacklist (URIBL, retrieved 30 December 2016)

8 Project Honey Pot (Unspam Technologies, Inc., retrieved 18 January 2017)

Local Reputation Management 173

http://www.corpit.ru/mjt/rbldnsd.html
https://www.spamhaus.org
http://www.surbl.org
https://uribl.com
https://www.projecthoneypot.org

Dynamic network, session, and user access control

Write rules to keep track of the behavior of the individual system elements (IP
addresses, sessions, users, and so on, as discussed in Chapter 8, Persistent Storage),
denying access to those elements that cross thresholds. The rules from this category
should ideally require little or no maintenance and use only temporary bans that
don’t require manual intervention. For example, if you keep an anomaly score per IP
address, you want to ensure the score will go up and down as needed.

Integration with Other Apache Modules

One of the biggest advantages of Apache is its modular nature. With modularity and
popularity combined, it sometimes seems that there’s already a module to fulfill whatever
need you can think of it. In most cases, modules are used on their own, but multiple
modules can sometimes communicate with one another. ModSecurity generally tries to
avoid reimplementing features available in other modules, even for functionality that could
come under the security label. Thus, there will be times when you’ll need to send or receive
instructions to and from other modules.

There are two mechanisms in Apache that allow for communication among modules:

Environment variables

Intermodule communication using environment variables is a common approach to
allow modules to exchange information and influence one another. Whenever two
modules need to communicate, the receiving module will be configured to watch for
the presence (and possibly the value) of a particular environment variable and act
on it. Many modules are built with environment variables in mind, so whenever you
discover that a particular module supports these variables, you can use them to talk
to the module from ModSecurity using the setenv action. Because you can use the
ENV collection in ModSecurity to retrieve the value of a named variable, you can write
rules that use the information prepared by other modules.

Optional functions

Optional functions make it possible for a module to export one or more named
functions for other modules to consume. This mechanism is intended for module
developers to use; chances are that you won't use it very often. ModSecurity builds
its extension APIs on top of optional functions. The extension APIs are described in
Chapter 14, Extending the Rule Language.

The modules you may find yourself integrating with are as follows:

« mod_deflate

o mod_headers

174

Chapter 9: Practical Rule Writing

« mod log config
e mod_proxy

o mod_rewrite

e mod_sed

o mod_setenvif

You should be aware that it may not be possible to get any two modules to communicate
successfully. If you want to send information from ModSecurity to another module, you
must verify that ModSecurity runs first. If you want to consume information in ModSecuri-
ty, you need to verify that the other module runs first. In some cases, the order of execution
is obvious. For example, if you do something in a request phase in ModSecurity, you’ll
always be able to consume it in the response phase in mod_headers, and vice versa.

The process becomes tricky when both modules operates on the request or both modules
operate on the response. Apache has many extension points, but modules dont document
which ones they use. Experimentation is one way to determine whether something is
possible; another way is to get your hands dirty, read the source code, and even sometimes
change the order in which things happen.

Conditional Logging

Normally, an access log will record every transaction processed by Apache, but sometimes
you'll want to record only some transactions. This is called conditional logging, and Apache’s
logging facilities support it, enabling the use of environment variables to decide what to log
as follows:

« Log by default, but do not log if an environment variable is set
« Do not log by default, but log if an environment variable is set
The following example creates a custom access log that logs only transactions from a specific

IP address:

Detect the condition that requires logging
SecRule REMOTE_ADDR "@ipMatch 192.168.1.1" \
id:1000,phase:1,pass,nolog,setenv:SPECIAL_ACCESS LOG

Create a special access log file, which reacts to
the SPECIAL_ACCESS LOG environment variable.
CustomLog logs/special access.log combined env=SPECIAL ACCESS LOG

Header Manipulation

In Apache, the mod_headers module is used for header manipulation. Its Header and
RequestHeader directives know how to look up an environment variable, as described in

Conditional Logging 175

the previous section, which means that you can use them to conditionally change request
and response headers. As before, the aim is to check for a condition using ModSecurity and
set an environment variable if the condition is met.

The following example uses ModSecurity to instruct mod_headers to delete the session
cookie from the client:

Simulate a condition that would want us

to force the user to use another session

SecRule ARGS "@rx attackPattern" \
"id:2000,phase:2,pass,t:none,log,setenv:DISABLE_OUTBOUND SESSION"

Expire session cookies when instructed
Header set Set-Cookie "PHPSESSID=;expires=Fri, 31-Dec-1999 00:00:00 GMT" \
env=DISABLE_OUTBOUND SESSION

Securing Session Cookies

In web applications that support user authentication, session cookies function as temporary
passwords. Users provide their credentials only once and then, assuming theyre correct,
their sessions are marked as authenticated. From that point on, whoever knows a session’s
ID can exercise full control over it. Great care needs to be taken when constructing session
cookies to ensure that theyre secure. In many applications, the security of session cookies
can be improved by changing two aspects of how they’re constructed:

Use of the HttpOnly flag
The HttpOnly flag is an Internet Explorer innovation that aims to prevent access to
session cookies from JavaScript (which is the most common way to steal a session ID
after a successful XSS attack). The idea is that session cookies are needed only by the
server-side code and that we lose nothing by forbidding access from JavaScript. With
the HttpOnly flag in place, session hijacking becomes significantly more difficult.

Use of the Secure flag
When a site uses SSL, there is no way for an attacker to gain access to the data being
exchanged between the site and the users. When using SSL, marking session cookies
as secure is frequently omitted. This omission can lead to a compromise of users’
session cookies, giving an attacker complete access to the corresponding sessions.

If you're using Apache, you can fix these problems quickly by using just two mod_headers
instructions. The following example improves the security of the session cookies used by
PHP:

Add missing HttpOnly flag
Header edit Set-Cookie "(?1)"(PHPSESSID=(?:(?!httponly).)+)$" "$1; HttpOnly"

176 Chapter 9: Practical Rule Writing

Add missing Secure flag
Header edit Set-Cookie "(?i)"(PHPSESSID=(?:(?!secure).)+)$" "$1; Secure"

Here, we look at the Set-Cookie header, which is used to create new cookies, and look for
session cookies that don’t have the desired flags set. If such incorrectly set cookies are found,
we modify the headers to append the missing flags. The example uses several rarely used but
highly useful features:

o The regular expression patterns both begin with (?1), which ensures that matching is
case-insensitive.

o In the second part, there is a negative lookahead assertion, causing the entire pattern to
match only if the bits in the assertion don’t appear anywhere in the header.

o The fourth parameter, which contains the value that will replace an existing Set-Cookie
value, makes use of backreferences ($1), which are replaced by the existing header
value. Finally, after a semicolon, we append the appropriate missing flag (HttpOnly or
Secure).

It’s interesting to see how much information can be contained in a single line of text, isn't it?

Advanced Blocking

Chapter 8, Persistent Storage, introduced many advanced blocking techniques, but that was
only half of the story. This section is the second half, discussing a few practical details and
introducing the concept that blocking doesn’t need to be a purely black and white affair. In
fact, as you'll soon see, the wealth of facilities provided in ModSecurity allows you to do
what you want when and how you want.

Immediate Blocking

When we talk about blocking, we tend to have in mind the straightforward approach, in
which you detect a problem and block immediately, as follows:

SecRule ARGS "@rx attack" \
"1d:2000,phase:2,deny,status:403,log,msg: 'Attack detected'"

When you use the deny action, which is the primary blocking mechanism, ModSecurity will
instruct Apache to cut short transaction processing and respond with an HTTP status code
of your choice. By default, the status code 403 (Forbidden) is used, but you can specify any
other status code using the status action. Responding with the 403 status code is probably
the best choice if you don't have a desire to hide your actions from a potential attacker.

Having said that, there’s a case to be made for laying low and keeping the attacker guessing.
I often use the 500 status code (Internal Server Error), because that’s how a malfunctioning

Advanced Blocking 177

site would respond. On the other hand, if you have a false positive with a 500, you create an
impression in your user base that your web site is crashing.

Note

When working with whitelisting rulesets, I sometimes respond with the 404 status
code to requests for forbidden URIs. That’s technically not correct, but it leaves an
attacker in the dark about the existence of a resource I want to protect.

To some errors, you can respond with a meaningful status code, such as 405 (Method Not
Allowed) and 501 (Not Implemented). Responding with an inappropriate status code (e.g.,
blocking with 504 or 501) is not recommended, because it may confuse many HTTP clients
and also makes it easy for others to fingerprint your rules.

Not all phases are created equal when it comes to blocking. You can block reliably from
some but not from others. The full details are presented in Table 9.1.

Table 9.1. Phase blocking suitability

Phase Blocking notes

REQUEST_HEADERS (1) Request and response always possible.

REQUEST_BODY (2) Request and response always possible.

RESPONSE_HEADERS (3) Response blocking always possible. Request already processed.
RESPONSE_BODY (4) Response blocking possible, but only when response buffering is enabled. Re-

quest already processed. Response headers might have been sent.
LOGGING (5) Never possible. Request already processed. Response already sent.

Keeping Detection and Blocking Separate

Although ModSecurity rules have the ability to be very specific about blocking, specifying
whether to block and how to block, I take the view that those decisions are none of the
rules’ business. The rules should focus on detecting issues and raising flags and generally
leave it to the system administrator to decide what to do. There’s a facility in ModSecurity
that enables the rule writers to ensure just that—the block action.

When a rule uses the block action, it essentially gives the system a hint that it believes
blocking should take place, but the administrator is free to specify what really happens. In
the following example, the rules rely on the blocking policy specified at the beginning of the
block:

Define how blocking takes place
SecDefaultAction phase:2,log,deny,status:403

Detect attacks

178 Chapter 9: Practical Rule Writing

SecRule ARGS "@rx attacki" id:2000,phase:2,block
SecRule ARGS "@rx attack2" id:2001,phase:2,block

The advantage of this approach is that there is now only one location in which you change
the blocking policy. You don't have to make extensive changes in the rules. More impor-
tantly, the blocking policy defined in this way will work with third-party rulesets (but
only assuming they were correctly implemented, avoiding the use of any specific blocking
instructions):

Define how blocking takes place
SecDefaultAction log,deny,status:403

Include Acme Rule Set
Include conf/acme/*.conf

It’s even possible to avoid blocking, if the default action list uses pass:

No blocking by default
SecDefaultAction id:2000,phase:2,pass,log

User-Friendly Blocking

Whenever you use blocking, you need to be aware that your rules will probably produce
false positives. These false alerts will likely catch a few innocent users over time. The
security of your system may be your primary concern (otherwise, you wouldn't be blocking,
right?), but the innocent users that get caught as collateral damage won't be very happy. In
fact, the experience is likely to frustrate them and lose you money.

To lessen users’ frustration, you need to set up a user-friendly response page where you
explain to users why they were blocked. Depending on the nature of the block, you may
even be able to give them some practical advice (e.g., “try again in a few minutes”).

A simple blocking response page can be set up by using redirection as a blocking method:

Respond to attacks with a user-friendly response
SecRule ARGS "@rx attack" \
id:2000,phase:2,redirect:https://%{REQUEST HEADERS.Host}/security-error.shtml

A disadvantage of this approach is that the action of redirection makes users move away
from the original transaction that may have caused a problem. If they contact support,
you'll only have their account name to work with and not much else. In real life, you'll
want to have a way to connect your support tickets to the actual problems you can find in
the logs. We can use the UNIQUE_ID variable for this purpose. In the following example, we
propagate the unique transaction ID to the response page:

SecRule ARGS "@rx attack" \
"id:2000,phase:2,\

User-Friendly Blocking 179

redirect:https://%{REQUEST_HEADERS.Host}/security-error.shtml?«
uniqueid=%{UNIQUE ID}"

The client will then follow the redirect to the security error page and provide the unique
ID of the request behind the redirect as a query string parameter. Depending on your
environment, there are various options to display a query string parameter back to the
client. The following example is particularly lean; it uses Apache’s mod_include, which can
be installed on a reverse proxy without much overhead. Here’s the Apache configuration to
make this work:

LoadModule include module modules/mod include.so
...

AddType text/html .shtml
AddOutputFilter INCLUDES .shtml
...

<Location />
Options IncludesNoExec
...

</Location>

...

SecRule ARGS:uniqueid "!@rx ~[a-zA-Z0-9@-]{24}$" "id:1000,phase:1,deny"
SecRule ARGS:uniqueid "@unconditionalMatch" \
"id:1001,phase:1,pass,nolog,setenv:UNIQUEID=%{MATCHED VAR}"

The mod_include module requires a few options to configure correctly. First, we assign the
filename suffix .shtml to the module, then we enable the module using the IncludesNoExec
option. We follow up with a ModSecurity whitelisting rule that validates the uniqueid
parameter. Because we intend to display the contents of this variable back to the user, we
have to be certain that it doesn’t contain a XSS attack. Our rule guarantees this by allowing
only a set of known, safe characters that Apache normally uses. Then, we put the query
string variable into an environment variable named UNIQUEID, which will subsequently be
displayed by the Include module.

Here’s the security error page we're displaying:

<html>

<head>

<title>Security Error</title>

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
</head>

<body>
<h1>Security Error</h1>

180 Chapter 9: Practical Rule Writing

<pre>

Your request has been blocked for security reasons. Please try again
in a few minutes. Should the problem persist and you need to call
support, please write down the following problem information:

<!--#techo var="UNIQUEID" -->

We apologize for any inconvenience.
</pre>

<l--

This comment is here to increase the page size and prevent Internet
Explorer from masking the message. More information is available at
the following address:

http://support.microsoft.com/default.aspx?scid=kb;en-us;0294807
-->

</body>
</html>

External Blocking

In some cases, such as when you're under a denial of service attack, friendly blocking won’t
be a priority—but efficient blocking will. While discussing the defense against DoS attacks
in Chapter 8, Persistent Storage, I mentioned that defending against this type of attack on
the web server level isn’t the most efficient approach. If you move your blocking (of some
attack types) to the network level, you can simply block all traffic from the offending IP
address, taking the load off your web server.

ModSecurity can’t perform network-level blocking, but there are several ways in which you
can pass the required information to an external system that can, including the following:

External scripts
By using the exec action on a rule match, you can invoke a system program that
can initiate external blocking. The external script will have access to the offending IP
address through the REMOTE_ADDR environment variable.

Lua scripts
Using Lua along with the Curl bindings (the lua-curl package on my Debian server),
you can perform an HTTP request, passing on the offending IP address to some
remote system. From Lua, you have full access to transaction data, so you can send
anything you need.

External Blocking 181

Honeypot Diversion

If you have a lot of extra time on your hands, an interesting option is to block without the
attacker being aware of it happening. You can implement this type of blocking by using
the proxy action to redirect an attacker’s requests to a separate system. Such a system is
usually called a honeypot. The idea behind honeypots is that you want to be able to observe
attackers” actions for as long as possible, because each additional request may tell you more
about the problems you have in your system. Honeypots have the potential to unearth
information your rules never could.

Honeypot diversion isn't practical implemented on a per-transaction level. Your honeypot
system may see only some transactions, and the transactions that happen after an attack will
again go to the main production system, which defies the purpose of the honeypot. Howev-
er, activating your honeypot in a persistent manner can work reasonably well. Working on a
per-session or per-user basis is a good choice; a per-IP-address honeypot could catch many
innocent users.

Delayed Blocking

Immediate blocking is the easiest approach to use, but it prevents the remaining phase rules
from running. You've blocked the transaction, but the messages associated with it may not
tell you the whole story. For example, your block could have been for a generic problem, but
a specific attack could be hiding in the request data somewhere. In my experience, rulesets
tend to order their rules from generic to more specific, and that adds to the problem of
information loss.

Delayed blocking, in which you wait until the end of each phase to decide whether to block,
solves the information loss problem. With it, all rules in a phase run, which means that you
get all the messages you can in the audit log.

To implement delayed blocking, use one transaction variable (e.g., TX.block) as an indicator
of whether blocking is needed. In your rules, you no longer block, but set the indicator
instead. Then, you add a rule to check the indicator at the end of each phase. The following
example demonstrates the concept:

Detect attack X

SecRule ARGS "@rx attackX" \
"id:2000,phase:2,pass,msg: 'Detected attack X',\
setvar:TX.block"

Detect attack Y

SecRule ARGS "@rx attackY" \
"id:2001,phase:2,pass,msg: 'Detected attack Y',\
setvar:TX.block"

182 Chapter 9: Practical Rule Writing

Delayed blocking

SecRule TX:block "@eq 1" \
"id:2002,phase:2,deny,log,msg: 'Phase block due to an earlier match'\
setvar:!TX.block"

In addition to blocking, the last rule unsets the blocking indicator, which prevents it from
“leaking” into subsequent phases when the engine is running in detection-only mode.

Score-Based Blocking

Score-based blocking is a variation on the delayed-blocking approach. Instead of using an
indicator, you use a score and decide whether to block depending on the resulting phase
score—for example:

Detect attack X

SecRule ARGS "@rx attackX" \
"id:2000,phase:2,pass,msg: 'Detected attack X',\
setvar:TX.score=+1"

Detect attack Y

SecRule ARGS "@rx attackY" \
"id:2001,phase:2,pass,msg: 'Detected attack Y',\
setvar:TX.score=+5"

Delayed blocking

SecRule TX:score "@gt 5" \
"id:2002,phase:2,deny,log,msg: 'Phase block due to high score'\
setvar:!TX.score"

The interesting thing about scoring is that you aren't restricted to using only one score;
you can have a score for any transaction characteristic you choose. Consider the following
approaches:

Phase scores
Keep a separate score for every phase. This enables you to implement delayed per-
phase blocking, but if blocking doesn’t take place, the scores remain available for use
in subsequent phases.

Attack class score
Each attack class could have a score of its own, which would allow for a fine-grained
approach to detection. The OWASP ModSecurity Core Rule Set uses this approach
(as well as a few others).

Transaction score
Keep a combined transaction score, possibly combining the individual phase scores.

Score-Based Blocking 183

Request and response scores
Keep one score for the first two phases and another for the second two phases.
This approach allows for a correlation between attack detection and attack results
detection. For example, suppose the request score reflects your suspicion that an SQL
injection attack is taking place. If the response score indicates a trace of the attack
(e.g., a database error message), you can decide to block.

Persistent scores
Once persistent collections are initialized, the concept of scoring can be applied to
higher-level elements such as IP addresses, sessions, and users. The only difference is
that transactions always start fresh with a score of zero, whereas persistent elements
keep their scores until they expire. A persistent score thus needs to involve a depreci-
ating element so that it effectively maintains itself. I discussed persistent scoring at
length in Chapter 8, Persistent Storage.

Score-based blocking is neat, but it can be difficult to implement. The burden is on the rule
writer to come up with a meaningful way to combine rule scores into combined values,
which is necessary for that final threshold check to work. For example, it can be an issue to
have several rules match for the same underlying problem, because that will artificially push
the score over the threshold.

Making the Most of Regular Expressions

Although ModSecurity supports many operators, regular expressions are so powerful and
versatile that they remain the most often seen choice in rules. ModSecurity uses the Perl
Compatible Regular Expressions library, better known as PCRE.’ This is a well-known and
widely used regular expression library, and it’s also used by Apache. Because they are so
powerful, regular expressions will often surprise you, and you’ll realize that theyre more
capable than you thought. This section will highlight the most important aspects of PCRE
and the way this library is used in ModSecurity, but it only covers the tip of the iceberg.
I highly recommend that you familiarize yourself with the PCRE documentation, which
contains everything you need to know.

How ModSecurity Compiles Patterns

Regular expression patterns are compiled (converted into an efficient internal representa-
tion) before theyre used. The compilation step helps the library improve performance,
doing as much work as possible only once, at configure-time. The compilation flags affect
how patterns are used, and you need to be aware of them. In the most important operator

9 Perl Compatible Regular Expressions library (PCRE, retrieved 30 December 2016)

184 Chapter 9: Practical Rule Writing

http://www.pcre.org

in which regular expressions are used, the @rx operator, ModSecurity uses two compilation

flags:
PCRE_DOLLAR_ENDONLY

By default, a dollar metacharacter will match a newline at the end of a string. Users
often don’t expect this, and it messes with rules that want to have complete control
over whats allowed in certain places. By using PCRE_DOLLAR_ENDONLY to compile

patterns, the dollar character is made to match only at the end of the input.

PCRE_DOTALL

Also by default, a dot metacharacter in a pattern matches all characters except those
indicating newlines. In a security context, that opens a potential weakness, by which
an attacker is able to use a newline to break up the attack payload and prevent a
pattern from matching. With PCRE_DOTALL set, a dot metacharacter will genuinely

match any character.

Table 9.2. Pattern compilation flags

Usage Compilation flags used

@gsbLookup PCRE_DOTALL, PCRE_MULTILINE

@rx PCRE_DOLLAR_ENDONLY, PCRE_DOTALL
@validateHash PCRE_DOLLAR_ENDONLY, PCRE_DOTALL
@verifyCC PCRE_DOTALL, PCRE_MULTILINE
@verifyCPF PCRE_DOTALL, PCRE_MULTILINE
@verifySSN PCRE_DOTALL, PCRE_MULTILINE
SecAuditLogRelevantStatus PCRE_DOTALL

SecHashMethodRx No flags used

SecRuleRemoveByMsg No flags used

SecRuleRemoveByTag No flags used

SecRuleUpdateTargetByMsg
SecRuleUpdateTargetByTag
Variable selection (e.g., ARGS)

No flags used
No flags used
PCRE_CASELESS, PCRE_DOLLAR_ENDONLY, PCRE_DOTALL

Now you know which compilation flags are used, but it'’s important also to learn about two

that are not used:

PCRE_CASELESS

Enables case-insensitive matching. Because this flag is absent when the @rx patterns
are compiled, all patterns are case-sensitive. (Use the t:lowercase transformation
function to achieve case-insensitive matching, or read the next section, which shows

another way.)

How ModSecurity Compiles Patterns

185

PCRE_MULTILINE
This flag changes the behavior of the » and $ metacharacters to force them to match
at the beginning of a line and at the end of a line, respectively. Without it, PCRE
will treat the entire input string as a single line. The PCRE default is used for the @rx
operator, which means that a * metacharacter will always match at the beginning of
the string, and $ will always match at the end.

There are several other points at which regular expressions are used, and although they
are not as security-sensitive as the @rx operator, you should still be aware of how they’re
compiled. Table 9.2 gives a complete picture.

Changing How Patterns Are Compiled

If you aren’t happy with how ModSecurity compiles patterns, you'll be glad to hear that
PCRE allows you to override the compile flags from within the pattern itself. For example,
the following rule—which doesn’t use any transformation functions—will match the word
attack no matter what case is used:

SecRule ARGS "@rx (?i)attack" \
id:2000,phase:2,deny,t:none

The (?1) part, placed at the beginning of the pattern, activates the PCRE_CASELESS flag for
the entire pattern. It’s also possible to change a setting for only a part of a pattern by placing
the modifier within:

SecRule ARGS "@rx attack (?1)keyword" \
id:2000,phase:2,deny,t:none

The previous expression will match attack keyword and attack KeYWORD, but not ATTACK
keyword. If you place the modifier in a subpattern, then only the remainder of the subpat-
tern will be modified:

SecRule ARGS "@rx (key(?i)word) attack" \
id:2000,phase:2,deny,t:none

The previous expression will match keyWORD attack, but not keyWORD ATTACK, nor KeyWORD
attack.

To remove a flag, use a hyphen in front of the letter. The following pattern unsets the
PCRE_DOTALL flag that’s used by ModSecurity by default:

SecRule ARGS "@rx (?-s)keyword" \
id:2000,phase:2,deny,t:none

The complete list of the modifiers you can use in this way is in Table 9.3. For complete
meanings, look up the modifiers in the PCRE documentation.

186 Chapter 9: Practical Rule Writing

Table 9.3. Pattern modifiers

Modifier Meaning
i PCRE_CASELESS
J PCRE_DUPNAMES
m PCRE_MULTILINE
s PCRE_DOTALL
] PCRE_UNGREEDY
X PCRE_EXTENDED
X PCRE_EXTRA

Common Pattern Problems

Mistakes in regular expression patterns are common, but two are seen more often than
others:

Forgetting to escape the metacharacters
The most frequently unescaped metacharacter is the dot. It most commonly happens
when you’re writing patterns to match IP addresses, which have many dots in them.
An unescaped dot will match any character, matching against unintended characters
if it wasn't meant to be used as a metacharacter. Other metacharacters that have to be
escapedare 2,*,+,{,}, (), [.\, ~, $,and |.

Not using the * and $ anchors when matching entire input
The use of the *» and $ anchors is required when you want your patterns to match
complete input strings. If you omit one or the other, you allow an attacker to send
anything before your pattern (when you don't have the * at the beginning) and
anything after your pattern (when you don’t have the $ at the end). Without these
anchors, a pattern may match a substring in the middle, ignoring anything else.

Regular Expression Denial of Service

Regular expression denial of service (ReDoS) is a relatively obscure problem that affects every
regular expression writer. Some regular expression constructs are known to suffer from bad
performance when certain edge cases are encountered; in the worst case, the reduction in
performance is exponential with input length. If you aren’t careful, you can write a pattern
that can be manipulated from the outside by an attacker to consume most or all of your
server’s resources.

Here are some examples of vulnerable patterns (borrowed from Roichman and Weidman
2009):

Common Pattern Problems 187

o *(a+)+$

o “(alaa)+$

o *(ala?)+$

o *(.*a){x}$, for x >= 2; depending on your PCRE limits

Triggering these types of regular expressions with a parameter value like
aaaaaaaaaaaaaaaaaaaX can cause a denial of service on your server’s CPU.

In ModSecurity, regular expressions are configured with conservative limits by default,
allowing only up to 1,500 matches and up to 1,500 internal recursions. This means that an
attacker exploiting one of your weak regular expressions will be stopped before problems
escalate too much.

On the other hand, when this self-defense mechanism kicks in, the rules don’t complete and
may miss the attack they were designed to catch. An attacker could “spice” their exploits
with ReDoS, evade your defenses, and hit the application.

You have several options to defend against this weakness. First and best, you can construct
your regular expressions in a way that makes them safe from ReDoS. This approach requires
advanced knowledge and is outside the scope of this book, but we recommend the following
resources:

« Alex Roichman and Adar Weidman: “Regular Expression Denial of Service” (OWASP
presentation slides, 2009)'°

« Michael Hidalgo: “Regular Expression Denial of Service,” blog post (2015)!!
« OWASP: ReDoS'?
« Wikipedia: ReDoS!?

You can also raise the PCRE matching limits using the SecPcreMatchLimit and
SecPcreMatchLimitRecursion directives. The default of 1,500 matches each is conservative;
I've successfully used values of up to one million in production setups. For example, with
this limit, the attack pattern presented previously took around 12 milliseconds to evaluate
(and abort) on my mediocre server. That isn’'t yet a proper DoS attack, but if executed by
a large group of requests in parallel, it could very well become one. Therefore, you need to
weigh the risk of a DoS attacks against the possibility of a rule bypass. My answer to this
question is to raise the limit and to monitor for Do§, then react if necessary.

Finally, as a safety net, you can refuse to serve requests that breach PCRE limits. This can
be achieved with a rule that monitors the WEBSERVER_ERROR_LOG variable. If you place such a

10 Regular Expression Denial of Service (Alex Roichman and Adar Weidman, retrieved 22 March 2017)
11 Regular Expression Denial of Service (Michael Hidalgo, retrieved 22 March 2017)

12 Regular expression denial of service—ReDoS (OWASP, retrieved 30 December 2016)

13 ReDoS (Wikipedia, retrieved 30 December 2016)

188 Chapter 9: Practical Rule Writing

https://www.owasp.org/images/3/38/20091210_VAC-REGEX_DOS-Adar_Weidman.pdf
https://dzone.com/articles/regular-expressions-denial
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://en.wikipedia.org/wiki/ReDoS

rule at the end of phase 2 and block offending requests, you can be sure that ReDoS can't be
used for rule bypass:

SecRule WEBSERVER ERROR_LOG "@rx PCRE\ limits\ exceeded" \
"id:2999,phase:2,deny,log,msg: 'PCRE limit error (Possible ReDoS)

Be aware that false positives are likely in this situation. In fact, PCRE limit errors are
frequent when running the OWASP ModSecurity Core Rules. You need to balance PCRE
limits and the security of your site against typical user input. A combination of the three
defense options therefore will provide the best results, especially because it isn’t always
possible to construct every rule in such a way as to be safe from denial of service.

Resources

Don't be surprised if you sometimes become overwhelmed working with regular expres-
sions. That’s entirely normal and will vanish in time. You dont have to buy a book to
become proficient in regular expressions, but it will certainly help if you do. My only
issue with available books is that they all cover many regular expression flavors, and I'm
interested only in PCRE. However, there are at least two classic books you should consider:

o Mastering Regular Expressions, by Jeffrey Friedl (O’Reilly, 2006), is widely considered to
be a classic work on regular expressions.

o Regular Expressions Cookbook, by Jan Goyvaerts and Steven Levithan (O’Reilly, 2012),
is a decent addition to the regular expression work and adopts a more practical style of
learning.

You should also consider one of the following tools, which will enable you to interactively
design and analyze regular expressions:

+ Regex101,'* often mentioned as the best online tool.

o RegExr!® provides somewhat simpler explanations.

+ RegexBuddy,'® a commercial tool written by Regular Expressions Cookbook co-author

Jan Goyvaerts, is often recommended as the ultimate regular expression assistant.

1

o Expresso!” is a free tool from Ultrapico.

Working with Rulesets

Rulesets are packaged collections of rules designed to address a particular problem. In this
section, I'll discuss rulesets first from a user’s point of view and then from a ruleset writer’s

14 Regex101 web site (Regex101, retrieved 30 December 2016)

15 RegExr web site (RegExr, retrieved 30 December 2016)

16 RegexBuddy web site (RegexBuddy, retrieved 30 December 2016)
17 Expresso web site (Ultrapico, retrieved 30 December 2016)

Resources 189

https://www.regex101.com
http://regexr.com
https://www.regexbuddy.com
http://www.ultrapico.com/Expresso.htm

point of view. You should read both sections no matter which group you belong to, because
they’re just different aspects of the same story.

Deploying Rulesets

If a ruleset is well-written, deploying it is a matter of deciding how to react to its alerts and
adding the ruleset to your configuration. In other words:

Configure default blocking policy
SecDefaultAction "phase:1,pass,log,auditlog"”

Activate Ultimate rules
Include conf/ultimate-rules-9.99/*.conf

You shouldn’t use blocking when you deploy a ruleset for the first time, because you don’t
know if it will produce many false positives. Warnings will be sufficient for the first couple
of days or weeks. Once you gain confidence that the ruleset won't ruin you financially, you
can switch to blocking if you want.

There are only two maintenance activities you should ever do when it comes to rulesets:
dealing with false positives and updating to new releases.

Dealing with False Positives: Exclusion Rules

Big rulesets tend to have false positives. If an application has free-form text fields, sooner or
later a legitimate user will enter some text that will trigger a rule and cause a false positive.

Occasional false alarms can be ignored, but just where should you draw the line? In my
experience, it depends on the application and the users involved. As a rule of thumb,
anything more than one false alarm in 10,000 requests is certainly too much. However,
there are services that need this rate to be as low as one false positive in every one million
requests.

ModSecurity offers many options to deal with false positives, providing tools to exclude
certain rules in certain situations. In effect, youre writing rules to manipulate (typically
exclude) some other rules. I thus call them exclusion rules.

This chapter started with several sections dedicated to the concept of whitelisting. The
concept of exclusion rules is close to that idea, but instead of bypassing ModSecurity, we're
now excluding a particular request or parameter from a group of rules—often from a single
rule. Therefore, the artificial hole you pierce into your ruleset is much smaller with this
approach, making it the preferred method to deal with false positives.

Exclusion rules fall into two categories: 1) manipulations at configuration time during the
startup of the server and 2) manipulations at runtime as requests come in. We'll start with
the former category; Table 9.4 lists the necessary directives.

190 Chapter 9: Practical Rule Writing

Table 9.4. Directives for rule manipulation at startup

Directive Meaning

SecRuleRemoveById Deactivate rules, matching by ID
SecRuleRemoveByMsg Deactivate rules, matching by message pattern
SecRuleRemoveByTag Deactivate rules, matching by tag pattern
SecRuleUpdateActionById Change rules’ action lists of rules, matching by ID
SecRuleUpdateTargetById Change rules’ targets, matching by ID
SecRuleUpdateTargetByMsg Change rules’ targets, matching by message pattern
SecRuleUpdateTargetByTag Change rules’ targets, matching by tag pattern

All these directives are used by placing them after the rules they intend to manipulate.
Because larger rulesets are usually loaded via Include statements, exclusion rules are best
placed immediately after.

This approach to rule exclusion provides the best performance because everything occurs
at startup time. Longer lists of these directives are also easy to read and understand, which
helps with maintenance. Unfortunately, they can be a bit coarse (i.e., the hole they drill is
too wide); if you need more granular control, you can try the second approach, which is
to manipulate rules at runtime as requests are being processed. Table 9.5 lists the control
actions that perform this manipulation.

Table 9.5. Control actions for rule manipulation at runtime

Directive Meaning

ctl:ruleRemoveById Deactivate rules, matching by ID

ctl:ruleRemoveByMsg Deactivate rules, matching by message pattern

ctl:ruleRemoveByTag Deactivate rules, matching by tag pattern

ctl:ruleRemoveTargetById Remove parameters from rules, matching by ID

ctl:ruleRemoveTargetByMsg Remove parameters from rules, matching by message pat-
tern

ctl:ruleRemoveTargetByTag Remove parameters from rules, matching tag pattern

To manipulate rules at runtime, the control actions must be placed before the rules they
target. In the case of rulesets loaded via an Include statement, place the control actions
immediately before. Consider the following example, which allows a health monitor to
submit a request without a host header, which is forbidden in the OWASP ModSecurity
Core Rules:

RULE EXCLUSIONS (Runtime) : Rule IDs 4000-4999

Rule exclusions for health monitoring from 192.168.5.45

Deploying Rulesets 191

920280 : Request Missing a Host Header

SecRule REMOTE_ADDR "@ipMatch 192.168.5.45" \
"1d:4000,phase:1,pass,nolog,ctl:ruleRemoveById=920280,chain"
SecRule REQUEST_FILENAME "@beginsWith /healthcheck.do"

Although this approach is more flexible, it comes with a performance penalty, because all
the work is done during request processing, over and over again. However, the ultimate
benefit is that with this approach, you can choose to react based on the content of each
requests, which means that the effective rule configuration can be slightly different for
different requests.

Upgrading to New Releases

Updating to a new version should involve downloading the new files, going through the
documentation to understand the changes, and possibly using diff to see exactly what
changed. Some people prefer to switch back to detection-only for a while, just to make sure
there won't be any nasty surprises. Others, who have adequate budgets, will first try the
new rules in a staging environment. It’s advisable to keep the previous version of the rules
around, just in case you don’t find the new version satisfactory.

If you've copied and modified any of the rules, then when upgrading to a new release don’t
forget to check if the rule has been improved in the meantime.

Writing Rules for Distribution

When you're writing rules for yourself, youre often able to make design shortcuts, because
you do things in certain ways and there’s little sense in allowing for different behavior.
When writing for others, however, about the only certainty is that they will want things
done differently. When people download a ruleset, they basically expect to be able to plug
it into their web site and use it with little fuss. What they don’t expect is to have their site
overtaken by the newly installed rules. Thus, the key to writing rules for distribution is to
give your users options and let them decide what to do, as follows:

Avoid mixing rules with configuration
Your users will have spent significant time deciding exactly how they want to run
ModSecurity; you don’t want to surprise them by overriding their configuration with
something else. Besides, your configuration choices may not be adequate for their
circumstances.

Detect problems, but don’t react to them
Your job as a ruleset writer is to detect problems, not react to them. Leave the
reacting to your users. If you're writing straightforward blocking rules, you only need
to remember to use block as your disruptive action. If you're writing advanced rules

192 Chapter 9: Practical Rule Writing

that produce attack scores, don’t take any action, but document what the outcome of
your rules is going to be and leave it to your users to do the rest.

Split rules into modules

Splitting complex rulesets into modules is always a good idea, especially if you
can make the modules differ in terms of precision and performance. The split into
modules is a recipe for user satisfaction when coupled with good documentation that
explains the characteristics of each module.

Document your rules

Everything is game, provided you tell your users in advance what to expect. Include
such items as installation instructions, performance, the update mechanism, and so
on. The more you tell them, the happier they’ll be. On the rule level, make sure that
every rule contains every little bit of metadata you can think of.

For practical advice, consider the following:

Always specify id, rev (unless 1), msg, and severity.

IDs must be allocated from the pool assigned to the publisher.

Once allocated, the rule IDs must not be reused for other rules.

The rule revision number must be incremented with every change to the rule.
List all desired transformation functions, starting with t:none.

Use only pass and block as disruptive actions.

Never use nolog in combination with block.

Use logdata:%{TX.0} with complex rules, which will help your users understand exact-
ly what matched.

Use only the following directives:

SecAction
SecComponentSignature
SecMarker

SecRule

SecRuleScript

Never use the following actions:

allow
append
ctl
drop

Writing Rules for Distribution 193

e exec
e initcol
e pause

e prepend
o proxy

e redirect
o setuid

e setsid

o status

Summary

This chapter touched on a number of practical tasks, most of which are needed by every
single ModSecurity user. Whitelisting, blacklisting, and virtual patching constitute the core
of what ModSecurity was designed to do. The section on regular expressions provided
a good introduction to the topic, but you should consider buying another book or two
and learning everything there is to know about it. Regular expressions are the single most
powerful tool for inspection, and to this day I'm sometimes amazed with what they can do.

The next step is to discuss everyone’s favorite topic—performance. I'll give you the informa-
tion you need to understand performance, which is important for your ability to write
efficient rules, and to measure performance, which is important so that you can know how
your ModSecurity installations perform.

194 Chapter 9: Practical Rule Writing

10 Performance

In this chapter, I present a detailed analysis of the performance of ModSecurity. Perfor-
mance is everybody’s favorite topic, but judging by the evidence (i.e., few users are com-
plaining), ModSecurity runs fast enough. That said, there’s no reason for it to run slower
than it could, and this chapter will both teach you how to measure performance and explain
how to make ModSecurity run efficiently.

Understanding Performance

Our first task is to understand where ModSecurity spends its time. Different sites have
different usage profiles, and when you consider that the rules will be different too, you
realize that a performance aspect that isn’t important to you may be very important to
someone else.

With three key resources in mind (CPU, RAM, and I/O), the following list details the
performance hot spots in ModSecurity:

Parsing
ModSecurity reuses the work performed by Apache—but because it goes deeper, it
needs to do more parsing of its own. It's not much work, however. On a simple GET
request, only the parameters in the query string will be parsed. On POST requests, the
parameters placed in a request body will be parsed. Unless youre parsing XML or
JSON (both of which are disabled by default), the overhead from parsing won't be a
cause of concern.

Buffering
I guess you could say that ModSecurity uses a lot of RAM, which is necessary to
allow for reliable blocking. Even without the buffering requirement, the additional
data processed by ModSecurity has to be stored somewhere. The difficult thing about
RAM is that the added consumption is difficult to measure; it can be measured only
indirectly, by observing differences in behavior with and without ModSecurity.

195

File upload interception

Handling file uploads can slow things down, for two reasons. First, to avoid using
too much RAM, request bodies typically will be stored on disk, which adds to I/O
requirements. There will be two passes: one to store a request body and another
to read it (so that it can be forwarded for processing). The I/O overhead is further
increased if you choose to use file upload interception, because ModSecurity will also
need to extract individual files from the stream of request body data to store them
separately.

Rule processing
The rule processing CPU requirements constitute the bulk of the ModSecurity over-
head. The good news is that youre in full control: the fewer rules you have in
your configuration, the better the performance. If you read this book and follow my
advice, I don’t expect you'll have any performance trouble. Be careful with third-party
rulesets, though. Don’t assume that they’ll perform well, and always test them before
using them in production.

Persistent storage operations
By definition, a persistent storage mechanism is going to cost more than just storing
data in RAM, because you need to ensure that the data you put in survives applica-
tion restarts. ModSecurity’s persistent storage is disk-based, which means that it isn't
as fast as it could be (if it used shared memory, for example). Modern operating
systems are very good at buffering filesystem operations, so the performance should
be decent. This isn’t something to be concerned about, but it should be monitored.

External operations
External operations aren’t going to cost you anything unless you use them, which
means that this entry is here to remind you of the potential cost. Features such as the
@rbl operator (which performs a DNS request) and the exec action (which executes
an external binary) are outside the control of ModSecurity and should be watched
for.

Logging
Assuming you don’t make any configuration mistakes (e.g., enabling debug logging in
production), logging won’t cost you much. Most of the cost will go toward perform-
ing audit logging, which, after all, should take place only once in a while. If you're
keen to use full audit logging, you should consider using a separate disk array for that
purpose alone.

Top 10 Performance Rules

If there’s one thing that people love more than talking about performance, it’s top 10 lists—
so what better way to discuss performance than with a top 10 list of its own! If you have just

196 Chapter 10: Performance

10 minutes to spend thinking about this problem, try the following list—in no particular
order:

Avoid debug logging in production
The debug log is verbose, especially at higher levels. At best, the SecDebugLoglLevel
directive should be kept at 3 in production, in which case it will contain only the
essential messages. A copy of the essential messages will be recorded in the error
log, so it’s even possible to completely turn debug logging off. If your web server
installation uses an error log per virtual host, however, you may benefit from keeping
the debug log level at 3, because you'll then have a record of all ModSecurity actions
on the server for all virtual hosts.

Understand performance
The previous section gave an overview of where performance issues may appear.
With that information, and now that you also know what affects the performance of
the rules, you're halfway to achieving desired performance levels.

Enforce limits
The role of runtime limits is to put a cap on the unknown. You can never control
external factors, but you can (and should) refuse to process a request that would
endanger your system. For more information on what to configure and how, refer to
the detailed configuration instructions in Chapter 3, Configuration.

Minimize false positives
Eliminating false positives will not only make it easier to spot real problems but also
eliminate the unnecessary I/O operation required to perform audit logging.

Be reasonable in what you expect
Extensive content inspection can be costly. That usually isn’t a problem on a dedicat-
ed reverse proxy (especially one designed to work as a web application firewall), but if
you're dealing with a web server that’s already running at the limit of its capacity, you
can't expect to add ModSecurity and get away with it.

Use adequate matching techniques
If youre writing your own rules, the best way to make them run efficiently is to
use the pattern matching techniques that have performance characteristics which are
a good match for the job. You'll find a good overview of the available approaches
later in this chapter, in the section called “Optimizing Pattern Matching” later in this
chapter.

Know your sites and your rules
Knowing what your sites do and what your rules do (even if you didn’t design either
yourself) will give you a rough idea of what to expect. The more you know about the
system, the better.

Top 10 Performance Rules 197

Keep track of performance
Always keep a performance log. It will give you peace of mind when you're doing fine
and help you spot performance issues early when you aren’t. Having a performance
log is also essential to address (usually unsubstantiated) “your site is slow” accusa-
tions.

Test response content types before buffering
Another configuration mistake that’s easy to make is to use response body buffering
on all requests, which increases RAM consumption and wastes the time used on the
response inspection.

Test your limits
You should know what your system is capable of before you post your link to
Slashdot. Finding out later usually isn’t good. It’s also a good idea to have a plan for
what you’ll do when your system becomes overloaded.

Performance Tracking

If performance is a concern, your first step should always be to measure it. ModSecurity
has excellent features to accurately track its performance with detailed data down to the
individual execution of a rule.

Performance Metrics

The implementation of performance tracking in ModSecurity always keeps track of a
number of performance metrics. Partial access to that data is available in real time, using
any of the variables from the PERF_ family. You can, for example, retrieve the duration of a
previously completed phase, but you can’t get any information for the phase currently being
processed.

All the basic metrics, apart from the duration of the audit logging phase, are recorded in the

audit log entry of a transaction, for which the Stopwatch2 header is used:

Stopwatch2: 1264256494438648 5131; combined=3917, p1=11, p2=3653, p3=3, p4=29, ¢
p5=221, sr=0, sw=0, 1=0, gc=0

The first two values are the same as in the original Stopwatch header (request start time and
duration). The performance metrics follow after the semicolon:

« combined: Combined processing time
o pl-p5: Time spent in each of the rule phases

o srand sw: Time spent reading from and writing to persistent storage, respectively

198 Chapter 10: Performance

« 1: Time spent on audit logging

« gc: Time spent on garbage collection

All the values are given in microseconds.

Performance Logging

Performance logging must be performed when all work ModSecurity does on a transaction
is complete. That means that you’ll have to use Apache’s logging facilities (mod_log_config).
You can choose to add the additional information to your existing access log or create a
separate log file. By using a feature that was added as part of the performance tracking
improvements, it's possible to log any ModSecurity variable from within mod_log config
using the special %{VARNAME}M format string (only the uppercase M works; the case is not
important in variable names). That improvement, along with moving phase 5 to happen
prior to Apache performing its logging, makes the final performance logging possible.

Use Apache’s CustomLog directive as follows to create a special log to track ModSecurity
performance:

CustomLog logs/modsec_performance.log "%V %h %1 %u %t \"%r\" %>s %b | \
%{UNIQUE_ID}e %D | %{PERF_ALL}M"

The variables on the first line all come standard with mod_log config; if youre not sure
about their meaning, look them up in the Apache documentation. On the second line, we're
taking advantage of the special PERF_ALL variable, which was designed to include all the
combined performance metrics in the same format as in the Stopwatch2 header. What other
information you include is up to you, but I suggest that you always record the UNIQUE_ID
value, which will enable you to cross-reference an entry in this log to other information you
might have (a complete audit log entry, for example).

If you dont want to keep a separate performance log, you should at least add
%{PERF_COMBINED}M to your existing access log.

Real-Time Performance Monitoring

Because you can access performance counters from within ModSecurity itself, you can write
a rule to track the performance in real time. Assuming that you want to be warned about
the requests on which ModSecurity spends more than 2.5 milliseconds working, write the
following:

SecRule PERF_COMBINED "@gt 2500" \
"id:9000,phase:5,pass,log,msg: 'Slow ModSecurity rules detected'"

Performance Logging 199

The PERF_COMBINED variable contains the time, in microseconds, spent in ModSecurity
during the current transaction.

Load Testing

The only way to truly measure the performance of a ruleset is in production or with a
staging platform on which production traffic can be faithfully replicated. Web performance
testing is difficult on its own, even when ModSecurity isn’'t involved. Because rulesets do
many things, using anything but real traffic will mean that you're testing only one aspect of
the ruleset, which may or may not be important for you.

Note

The rulesets tested here were current when the second edition of this book was
written, but theyre continually being superseded by newer, improved releases.
However, the purpose of this section is not to benchmark the rulesets but to show
how the benchmarking is done. Ruleset performance can change from version to
version, and—given time—you should always run a quick test to verify that there
was no significant degradation compared to the version you are using.

Still, having some idea about what the performance will be like is advisable. In this section,
I'll test the performance of several ModSecurity rulesets:

o The whitelisting ruleset introduced in the previous chapter

« OWASP ModSecurity Core Rule Set 2.2.9 (the latest point release of the former major
release)

« Core Rule Set 3.0.0 with default settings (paranoia level [PL] 1)
o Core Rule Set 3.0.0 with PL 4

The whitelisting ruleset was adapted to the specific request used for testing. The CRS 2.2.9
test used all the rules from the base_rules folder. CRS 3.0.0 is a new major release with a
consolidated ruleset; it gives you the option to enable additional, more aggressive rules via
the so-called paranoia level setting. The CRS 3.0.0 PL 4 installation had to be tuned for the
test request to pass without a false positive.

In addition to the ruleset tests, I made two baseline tests: one without ModSecurity, and the
other with ModSecurity but without any rules.

In preparing for the test, I opted for a simple approach that will test the rulesets with a
nontrivial request. It’s not the best-case scenario, but not the worst-case scenario, either:

1. Iwrote a PHP script that simulates an application doing some work. I tweaked the
script until I got it to spend about 30 ms “working” In the real world, the application
will become slower under load. However, I built it in such a way that the 30 ms time

200 Chapter 10: Performance

would remain stable, because I wasn’t interested in load-testing PHP, but only the
ruleset. In practice, this corresponds with a reverse proxy in front of a potent farm of
application servers that aren’t affected by the load.

I performed some initial tests without ModSecurity to determine the limits of the
installation. The hardware used was a dedicated AWS EC2 cloud instance of the
m4.large type—that is, an octo-core 2.4 GHz Xeon processor with 8 GB RAM. Based
on the results, I settled on testing using between 100 and 1,200 requests per second.

I also made sure that neither the Apache configuration nor network bandwidth was
going to create a performance bottleneck. For performance tests, you want the CPU to
be the bottleneck, so the load was coming from a second machine of the same type.

For the test, I picked up a GET request with 12 parameters, with the size just under 300
bytes.

For the testing, I used the autobench tool, with the following command line:

$ autobench --single host --hostl IPADDRESS --urii /index.php\?firstname=John\
\&lastname=Smith\&username=john.smith\8password=12345678\8password repeat=\
12345678\8addressline1=First%20line%200f%20address\8addressline2=Second%20\
line%200f%20address\&postcode=WXXXX\&city=London\&country=United%20Kingdom\
\&phone=+447766XXXXXX\8param=Jjohn.smith@example.com --low rate 1 \

--high rate 15 --rate_step 1 --num _call 10 --num_conn 100 \

--timeout 5 --file results-baseline.tsv

I extracted two sets of data from the test results: response rate and response time. I then
used gnuplot to create the graphs:

set
set
set
set

set
set
set
set
set

terminal postscript eps mono dashed
output "response_rate.ps"

key inside left

key box

style data linespointsset ylabel "Response rate [req/s]"
xlabel "Request rate [req/s]"

grid

xrange [100:1200]

yrange [0:800]

plot "data/results-baseline.tsv" using 1:5 title "Baseline", \

"data/results-no_rules.tsv" using 1:5 title "No Rules", \
"data/results-whitelisting.tsv" using 1:5 title "Whitelisting", \
"data/results-2.2.9.tsv" using 1:5 title "CRS 2.2.9", \
"data/results-3.0.0-pli.tsv" using 1:5 title "CRS 3.0.0 PL1", \
"data/results-3.0.0-pl4.tsv" using 1:5 title "CRS 3.0.0 PL4"

The resulting graphs are shown in Figure 10.1 and Figure 10.2.

Load Testing 201

Figure 10.1. Response time test

Response time [req/s]

600

500

400

I
Baseline —+—
No Rules ——<— /
Whitelisting —
CRS 2.2.9 /6
CRS 3.0.0 PL1

CRS 3.0.0 PL4 —E— /3/

| | | | |
200 400 600 800 1000 1200

Request rate [req/s]

The response time graph is the more informative one:

1.

The performance of the application without ModSecurity is the same for the entire
duration of the test. Even at the high end, Apache is able to serve 1,200 responses per
second without a drop in performance. It would start to deteriorate at around 2,000
requests (outside the chart).

There’s virtually no difference in performance when ModSecurity is added without
any rules or with the whitelisting rule set. The naked ModSecurity overhead and small
individual rules like the partial whitelist are basically free, as far as performance is
concerned.

The three Core Rule Set versions vary greatly in performance:

o CRS 2.2.9 starts to make a significant impact at around 400 requests per second.
This gets increasingly worse as the load rises.

o The default CRS 3.0.0 option supports much higher loads than CRS 2.2.9.

« Enabling more rules by raising the paranoia level to its highest setting has a bad
effect on performance. Clearly, there’s a price to pay in return for the additional
security benefit.

Each ruleset has a different point at which the performance is significantly degraded.
With CRS 2.2.9, you'll notice a lag starting at about 400 requests per second. CRS
3.0.0 can sustain 900 requests per second, whereas CRS 3.0.0 with PL 4 slows down at
roughly the same rate as CRS 2.2.9.

202

Chapter 10: Performance

Figure 10.2. Response rate test

800 I
Baseline —+—

No Rules ——<— P
700 H Whitelisting o —
RS 2.2.9 //
CRS 3.0.0 PL1
600 |4 CRS 3.0.0 PL4 —5— -
500 - - N
> o
£ .
o /'/"
2
1 400 — A a
o
.
g P 5 ——
g 300 — : g0 © = =
/
200 — =
100 -

200 400 600 800 1000 1200

Request rate [req/s]

Now, let’s look at the response rate. The graphs show a typical plateau effect. With the naked
Apache or the simple whitelisting ruleset, we're still far from the plateau. Meanwhile, CRS
2.2.9 and CRS 3 PL 4 are able to deliver about 300 responses per second, whereas the default
CRS 3 comes in at 550 responses.

During the tests, I used vmstat to keep my eye on the overall state of the test system. I
noticed a rough correlation between the speed of a ruleset and its RAM consumption, but
none of the rulesets made a significant dent in free RAM on the 8 GB server.

Note

Keeping a historical record of the vital system information of production systems
is important in case you ever need to troubleshoot a problem after the fact. On
systems from the Debian family, install the sysstat package; for others, consult
vendor documentation.

The test results show us that not all rulesets are created equal: some are focused on perfor-
mance more than others. Whenever possible, you should test the ruleset youre evaluating
under circumstances that are as close as possible to the ones it will encounter in production.
Also, rulesets consist of many parts, and you don’t necessarily have to run all of them. If you
invest some time into understanding what a ruleset does, you'll probably be able to remove
some parts you don’t need and achieve better performance.

Load Testing 203

Rule Benchmarking

Accurately measuring the performance of individual rules isn’t possible using the same
version of ModSecurity that you use in production. Because the rules run for only a short
period of time, not only would any attempts to measure the individual performance be
inaccurate, but, because the measurements themselves take time too, the overall execution
speed would be noticeably reduced.

To allow for fine-grained performance measurement, ModSecurity has a compile-time
option called --enable-performance-measurement, which activates the normally inactive
performance measurement code. The version of ModSecurity you produce this way isn’t
usable in production, because it will be 5,000 times slower than a normal one. That’s
because in the performance measurement mode, each rule is run 5,000 times in a loop!

In this section, I'll guide you through the steps to accurately measure the performance of
your rules.

Preparation

For your rule performance tests, you'll need to prepare a specially compiled version of
ModSecurity as follows:

1. Choose a computer that isn’t used for anything else, which will enable you to get
consistent performance numbers. This computer will be used as a test server. You
won't need a client computer, because the nature of the tests is such that virtually no
resources are consumed on the client side.

2. Install Apache on the test server.

3. Run ModSecurity configure with --enable-performance-measurement and any other
configure-time option that you need.

4. Compile, install, and configure ModSecurity.

5. Make sure to disable audit logging and set the debug log level to 0. This is important
to prevent logging from interfering with the tests.

At this point, you may want to perform a request or two to see how performance measure-
ment works. Add a couple of rules to your configuration, and send one request to the web
server. In your error log, you'll see output similar to the following (I've removed a bunch of
nonessential stuff to make it easier to read):

ModSecurity: Phase 1
ModSecurity: Phase 2
ModSecurity: Rule f54d90 [id "2000"][file "/usr/local/modsecurity/etc/rules.conf"]e
[line "107"]: 1 usec
ModSecurity: Phase 3

204 Chapter 10: Performance

ModSecurity: Phase 4
ModSecurity: Phase 5

In performance measurement mode, ModSecurity will run all the rules it has in the config-
uration quietly (looping 5,000 times around each rule) and print the results at the end of
transaction processing. The results will contain an average measurement taken for every
rule (i.e., the total time of the rule execution divided by 5,000). In my example, I had only
one rule in my configuration. This particular rule ran quite fast, because it wanted to look
at request parameters, but my request didn't have any. To experiment for a while before
moving on to more complex tests, add the following rule to your configuration:

SecRule ARGS "@rx test" \
id:2000,phase:2,pass,t:none,nolog

After you restart Apache, start sending requests with a varying number of parameters and
observe the differences in rule performance.

How you write your rules—every little difference—will affect the performance, just as it
would in real life. For consistent results, you need to watch for two things:

Your rules shouldn’t block
If a rule blocks, the rules that follow won't get a chance to run. You can easily fix this
problem by using the detection-only mode of deployment.

Your rules shouldn’t log
If you can't avoid matching, use the nolog action to suppress logging.

Test Data Selection

Not all transactions are equal when it comes to rule testing. For example, most rules focus
on request parameters, which means that a request that has no parameters will complete
very quickly (as our first performance test showed). For your tests, you should select several
transactions that are representative of the workload on the target system. You can construct
test data based on what you know about the production system, or you can simply guess. If
you have the time, the best approach is to record key characteristics and build tests based on
that data.

The key characteristics are the following:
o Timestamp
o Duration
+ Request method
 Query string length
« Request content type

Test Data Selection 205

+ Request body length

« Combined size of all parameters, with file data excluded
o Number of parameters

« Response status

« Response content type

» Response body size

To record these characteristics, you'll need a few ModSecurity rules and one CustomLog
directive. The rules are used to collect the required information and transform it into a form
that can be logged by Apache:

How many parameters are there? We have to do this because

variable expansion does not currently support counting

SecRule &ARGS @unconditionalMatch \
"id:9000,phase:5,pass,capture,t:none,nolog, \
setvar:TX.ARGS COUNT=%{MATCHED VAR}"

Find out the length of the query string

SecRule QUERY_STRING @unconditionalMatch \
"id:9001,phase:5,pass,capture,t:none,t:length,nolog,\
setvar:TX.QUERY_STRING LENGTH=%{MATCHED VAR}"

Record per-transaction statistics

CustomLog logs/stats.log "%V %h %t %D \"%r\" | %{TX.QUERY_STRING_ LENGTH}M \
\"%{REQUEST_CONTENT TYPE}M\" %{REQUEST BODY LENGTH}M %{ARGS COMBINED SIZE}M \
%{TX.ARGS_COUNT}M %>s \"%{RESPONSE_CONTENT TYPE}M\" %B"

If you collect a representative sample of your site’s traffic over a period of time, you should
be able to build an accurate profile for testing.

Note

Most of the variables you’ll be logging depend on ModSecurity having access to
request body data, which means that the SecRequestBodyAccess directive must be
enabled for the statistics to be accurate.

Now that I've described this thorough approach to performance testing, I'll admit that I
often use a much simpler approach. I have four requests that I use:

1. A simple GET request, representative of the requests used to retrieve static resources,
with no parameters.

2. A short POST request that simulates a registration form or a feedback form. It has
12 parameters with about 300 bytes of data. This request is designed to show how
performance changes as the number of parameters grows.

206 Chapter 10: Performance

3. Along POST request with a single long parameter (about 15 KB), aimed at determining
how rules handle large amounts of data.

4. A very long POST request with a single very long parameter (about 150 KB), which
sheds light on the handling of very large amounts of data.

I'll use these four requests for testing in the remainder of this section.

Performance Baseline

Without further ado, I use the following rules to establish the baseline performance of
the ModSecurity rule engine. Each test is designed to exercise one aspect of rule engine
performance while minimizing all others. Examine the comments that precede the rules to
understand what each rule does.

A rule that uses a nonexistent variable.
SecRule XML @noMatch id:1000,phase:1,pass,nolog

A rule that always has one target variable,
but which never matches (and there's no operator cost).
SecRule REMOTE_ADDR @noMatch id:1001,phase:1,pass,nolog

A rule that always matches, designed to assess the cost
of the tasks performed on a match. (Also no operator cost.)
SecRule REMOTE_ADDR @unconditionalMatch id:1002,phase:1,pass,nolog

Unconditional action that doesn't do anything.
SecAction id:1003,phase:1,pass,nolog

Unconditional action that sets a variable.
SecAction id:1004,phase:1,pass,nolog,setvar:TX.x=1

A rule that applies a no-cost operator to every parameter,
which was designed to see how the cost rises with the

number of parameters present.

SecRule ARGS @noMatch id:2000,phase:2,pass,nolog

A rule designed to determine the cost of a single-parameter
match with no operator cost and no transformation functions.
SecRule ARGS:param @noMatch id:2001,phase:2,pass,t:none,nolog

A rule designed to determine the cost
of the lowercase transformation function.
SecRule ARGS:param @noMatch id:2002,phase:2,pass,t:lowercase,nolog

A rule designed to determine the cost
of the base64Encode transformation function.

Performance Baseline 207

SecRule ARGS:param @noMatch id:2003,phase:2,pass,t:base64Encode,nolog

A rule designed to determine the cost
of the compressWhitespace transformation function.
SecRule ARGS:param @noMatch id:2004,phase:2,pass,t:compresshitespace,nolog

One complete, reasonably complex rule, with
no transformation functions.
SecRule ARGS "@rx \bon(abort|blur|change|click|dblclick|dragdrop|end|error|\
focus | keydown | keypress | keyup | load |mousedown | mousemove | mouseout |\
mouseover |mouseup |move | readystatechange|reset|resize|select|submit|\
unload)\b\W¥?="\

id:2005,phase:2,pass,t:none,nolog

The baseline performance testing results (of ModSecurity 2.9.1) are shown in Table 10.1.
The results are given in microseconds.

Table 10.1. Baseline performance results

Rule GET POST Long Very long
POST POST
No variable cost 0 0 0 0
One variable, no match, no operator cost 0 0 0 0
One variable, match, no operator cost 1 1 1 1
Unconditional match, but no actions 1 1 1 1
Unconditional match, set variable 2 2 2 2
All arguments, no match, no operator cost 0 7 0 0
One argument, no match 0 0 18 175
One argument with t:lowercase, no match 0 0 18 175
One argument with t:base64Encode, no match 0 0 18 199
One argument with t: compressWhitespace, no match 0 0 25 243
Nontrivial regular expression 0 9 23 230

We draw the following conclusions:

o There seems to be a very small per-variable handling cost (engine overhead) of about
a half microsecond. This becomes visible when you look at the line with all 12 argu-
ments. They took seven microseconds to execute. Divide this by 12 and you realize why
the table reports 0 microseconds for a single variable. The engine overhead may seem
small, but it is in fact significant, because that’s what most rules will do: iterate through
all available parameters.

« There’s a per-match cost of about one microsecond. Because matches are relatively rare,
it's not something we need to be concerned about.

208 Chapter 10: Performance

« Rules without any parameters are processed quickly.
o The larger the arguments, the longer the transactions take. The growth is almost linear.

« With transformations, performance depends on the type, but they all cost less than
regular expressions.

Optimizing Pattern Matching

Using the performance measurement mode of ModSecurity, we established that there’s an
inherent cost to every rule. Now, we'll explore several optimization techniques that increase
the overall performance of pattern matching, especially when dealing with a large number
of patterns.

The basis for our tests will be 236 SQL function names, which I've retrieved from Core Rule
Set 3.0.0. Here are a few, just to give you an idea of what they look like:

abs
acos
adddate
addtime
aes_decrypt
aes_encrypt
ascii
asciistr
asin
atan
atan2
avg
benchmark
bin
bin_to num
bit_and

. 220 more keywords

As you can see, some of these functions are likely to result in many false positives (bin,
avg, benchmark, etc.); however, the goal of those keywords is not necessarily to detect an
SQL injection but rather to give an indication, based on which you could decide to perform
further tests.

Rule per Keyword Approach

We'll start with the naive approach to implementing keyword detection, using one rule per
keyword and arriving at exactly 236 rules. The performance of this approach will be the
baseline against which we’ll compare all other tests:

Optimizing Pattern Matching 209

SecRule ARGS "@rx abs" "id:2001,phase:2,deny"

SecRule ARGS "@rx acos" "id:2002,phase:2,deny"

SecRule ARGS "@rx adddate" "id:2003,phase:2,deny"
. 233 more rules

Although this approach isn't likely to result in great performance, it’s straightforward and al-
lows us to handle each keyword individually. For example, if you determine that a keyword
is causing too many false positives in a particular location, you can use SecRuleRemoveById
to remove the entire rule. The ability to deal with false positives in this way is especially
important for third-party rules, for which the ability to update easily from one release to
another is important. You want to be able to tweak third-party rules without modifying the
actual files.

Combined Regular Expression Pattern

To eliminate the per-rule overhead, we can combine all the keywords in a single regular
expression pattern using alternation:

SecRule ARGS "@rx (?i)(abs|acos|adddate|addtime|aes _decrypt|aes encrypt|ascii|e
asciistr|asin|atan|atan2|avg|benchmark|bin|bin to num|bit and|bit count|e
bit length|bit or|bit xor|cast|ciel|cieling|char length|char|character length|e

. 35 lines of text omitted from the middle

year | yearweek | xmltype)" "id:2000,phase:2,deny"

The single-rule approach is likely to provide a significant speed boost, but we've lost the
ability to suppress individual keywords. On the plus side, it’s fairly easy to locate a keyword
in the entire regular express pattern and remove it manually.

Optimized Regular Expression Pattern

Regular expression patterns are compiled into state machines. Our crude attempt at com-
bining keywords is easy to understand and do, but it doesn’t produce very efficient results.
The more keywords you have, the more likely it is that they have a lot in common. If you
can figure out what they have in common, you can write an efficient regular expression
pattern. I did just that, and this is the resulting regular expression:

SecRule ARGS "@rx (?:c(?:0(?2:n(?:v(?:ert(?: tz)?)?|cat(?: _ws)?|nection_id)|«
(?:mpres)?s|ercibility|(?:un)?t|1lation|alesce) |ur(?:rent (?:time(?:stamp)?|e
date|user)|(?:dat|tim)e)|h(?:ar(?:(?:acter)? length|set)?|r)|iel(?:ing)?|

. 30 lines of text omitted from the middle

qu(?:arter|ote)|year(?:week)?|xmltype)) "id:2000,phase:2,deny"

210 Chapter 10: Performance

The result is most certainly an incomprehensible mess. You can probably make out the
original keywords in the text, but they've all been “melted” together. You'll notice that
alternation is still used, but with deep nesting, combining the shared keyword bits. In
addition, data capture is disabled.

Increased pattern matching performance comes at a further maintenance cost. In addition
to not being able to work with individual keywords directly (the same problem as with
our earlier attempt at optimization), now it isn’t even possible to modify the one resulting
regular expression by hand.

Note

Although the combined regular expressions can’t be maintained by hand, nothing
says that manual maintenance is the only option. You easily can put together
a script or two to generate optimized regular expressions from a simple list of
individual ones. That way, you get the best of both worlds!

Of course, I didn't manually construct the heavily optimized regular expression. I used a
clever Perl module called Regexp: :Assemble! and followed the instructions written by Ofer
Shezaf in a blog post on the ModSecurity blog.? Ofer pioneered the use of heavily optimized
regular expressions in the first generation of the Core Rule Set.

I used apt-get install libregexp-assemble-perl to install Regexp::Assemble on my De-
bian box. In the blog post, Ofer provides instructions for installation on Windows, and
there’s even a Windows binary available for download.

A trivial script is needed to operate Regexp: :Assemble:

#!/usr/bin/perl

use strict;
use Regexp::Assemble;

my $ra = Regexp::Assemble->new;

while (<>) {
$ra->add($_);
}

print $ra->as_string . "\n";

You feed the script a list of keywords (one per line), and it spits back the optimized regular
expression:

1 Regexp::Assemble (David Landgren, retrieved 5 January 2017)
2 ModSecurity blog (Ofer Shezaf, retrieved 5 January 2017)

Optimized Regular Expression Pattern 211

http://search.cpan.org/~dland/Regexp-Assemble-0.35/Assemble.pm
http://blog.modsecurity.org/2007/06/optimizing-regu.html

$./optimize-regex.pl < sql-function-names.data
(27 (2:c(?2:0(2:n(2:v(2:ert(?:_tz)?)?|cat(?:_ws)?|nection_id)

...and so on

Parallel Pattern Matching

An alternative optimization technique is to use the parallel matching facilities of ModSecu-
rity, which use the Aho-Corasick algorithm to match all supplied keywords at once. I'll use
the @pmFromFile operator, which allows me to refer to the file in which the keywords are
stored (which is nice, because it keeps the configuration file neat and tidy):

SecRule ARGS "@pmFromFile sql-function-names.data" \
id:2000,phase:2,deny

When using @pm and @pmFromFile, you need to be aware that the underlying algorithm
doesn’t distinguish between uppercase and lowercase letters. If you want to use it in a
whitelisting scenario, you need to combine it with the t:lowercase transformation to make
sure there is no ambiguity in paths and parameters that could be used to evade your rules.

Test Results

The testing results of the four pattern-matching techniques are shown in Table 10.2. The
results are given in microseconds. We got pretty much the results wed expected and can
draw the following conclusions:

o The multirule approach carries a measurable cost, even with requests with no parame-
ters. It may take less than one microsecond to process a rule, but those microseconds
add up.

« Parallel matching is very fast. You should therefore aim to use it whenever you can,
which in practice means whenever you have a large number of keywords and the
expressiveness of regular expressions isn't required.

o If you must use regular expressions, using optimized combinations may increase the
speed several-fold.

« Using a large number of regular expressions against large amounts of data (e.g.,
response bodies) isn’t recommended. Doing so will consume significant amounts of
CPU power.

212 Chapter 10: Performance

Table 10.2. Performance comparison of pattern-matching approaches

Approach GET POST Long POST Very long
POST
Rule (@rx) per keyword (all rules summed up) 41 2,074 4631 54,903
Combined regular expression (@rx) 0 293 373 479
Optimized regular expression (@rx) 0 64 56 161
Parallel matching (@pm) 0 12 18 122
Summary

In the course of writing this chapter, I learned more about ModSecurity than ever before.
You see, I too was happy with the performance of ModSecurity and rarely felt the need to
look deeper into the topic—but I always wondered how ModSecurity was performing in
various usage scenarios. Having tested multiple setups, I am pleased to confirm that the
performance is really good when you pay attention to the correct use of the directives,
operators, and transformations.

The next chapter discusses content injection, an interesting feature that enables you to
extend your inspection capabilities from the server side into your users’ browsers.

Summary 213

11 Content Injection

Content injection is a security technique that allows you to inject arbitrary content into
HTTP response bodies. The technique was designed to address attacks that take place in the
browser itself, which is outside the reach of most server-side defenses.

With content injection, a server can reach out to inject dynamic content and code
(JavaScript) into responses, gaining in-browser inspection capabilities. First, you perform
your normal server-side inspection, after which you inject JavaScript into the HTTP re-
sponse to continue the inspection with full access to the browser’s internal state. This
chapter will give you a good overview of several useful and easy-to-use techniques based on
content injection.

Note

Nothing says that content injection has to be used only for defense. There’s a school
of thought that says offense is the best defense. If you subscribe to that view, you
could use content injection to attack the attackers, injecting malware directly into
their browsers. Just make sure that you understand your legal position before you
do anything that might be crossing the line.

Writing Content Injection Rules

Content injection allows you to inject content, possibly on a per-response basis, either at the
beginning of a response or at the end. Injecting at the beginning is useful if you want to
attempt to prevent attacks. Injecting at the end is useful if you want to inspect the content of
the page and the internal browser state after all other JavaScript code has already been run.

Warning

The injected code will be placed outside the body of the HTML document, produc-
ing a page with markup thats technically invalid. Most browsers will render (and
execute) the injected code just fine, but that behavior might change in the future.

To start, enable the injection feature using the SecContentInjection directive:

215

Enable content injection
SecContentInjection On

Note

Content injection doesn’t require that you have SecResponseBodyAccess enabled.

In the next step, determine whether injection would make sense. Web servers process many
types of requests, and only some responses can be injected. You wouldn’t, for example, want
to inject anything into an image; it would end up being corrupted. To find out whether a re-
sponse is injectable, check its content type, which you’ll find in the RESPONSE_CONTENT_TYPE
variable, in phase 3. (You shouldn’t try to use RESPONSE_HEADERS:Content-Type, which may
not always contain the necessary information.)

I suggest the following framework for all of your content injection rules:
SecContentInjection On

First check if we should inject anything
SecRule RESPONSE_CONTENT TYPE "!@rx ~text/html" \
id:6000,phase:3,pass,nolog, skipAfter :END_CONTENT_INJECTION

... your content injection rules here
SecMarker END_CONTENT INJECTION

First, check for the correct content type, skipping over all your content injection rules if an
incorrect type is used in a response. If youre going to inject into more than one type of
document (e.g., text/plain and text/html), then youre probably going to need different
rules, with different content for each type. In that case, just repeat the previous example
fragment, making sure to choose the content type correctly and to use a unique SecMarker
value in each group.

Finally, to inject content, use the append and prepend actions. The following example injects
a header and a footer into an HTML response:

SecAction id:6001,phase:3,pass,nolog,prepend: ‘Header<hr>'
SecAction id:6002,phase:3,pass,nolog,append: '<hr>Footer'

Note

The content injection facilities won’t perform any output encoding, which means
that you must manually encode everything you want injected. The prepend and
append actions do support variable expansion and make it possible to inject dy-
namically generated content, but you must take care to never inject any user-con-
trolled content. Doing so would create a XSS vulnerability, right there in your web
application firewall! Inject only what you have 100 percent control over.

216 Chapter 11: Content Injection

For testing purposes, you can also try the following simple JavaScript code, which will write
the URL of the current page on the screen:

SecAction "id:6001,phase:3,pass,nolog,\
prepend: '<script>document.write(document.location)</script>

Now, we've established that you can have your JavaScript code inside the browser—but what
can you do with this ability? Here are some ideas:

o Inspect request parameters, including the fragment identifier, which normally isn’t sent
to servers.

« Inspect the browser state. For example, a popular technique used to assist in XSS
attacks is to store the payload in window names (property window.name). That field is
out of bounds to a server, but not to the injected JavaScript code.

« Inspect the browser configuration; for example, look for vulnerable plug-ins.
o Inspect the page state and structure (DOM) at the end of page execution.
« Redefine the built-in JavaScript functions to detect unusual activity patterns.

JavaScript is a fascinating language that’s endlessly tweakable. Describing advanced
JavaScript attacks is out of the scope of this book, but if you want to learn more, simply pick
up the most advanced JavaScript book you can find and use it as a starting point.

Communicating Back to the Server

When you detect a problem using JavaScript, you need to somehow communicate that fact
back to the server. The best way to do so is to get the browser to send a special request. The
simplest way to do that is by writing some HTML into the response:

document.write("<script src=/security-error.js><" + "/script>");

Note

The injected payload must never contain the string </script> anywhere except at
the very end. If it does, then that’s where browsers will terminate the entire payload
and probably even cause a JavaScript error. String concatenation, as illustrated in
the previous example, is often used to deactivate the closing tag.

To the special request, add a rule that detects it and raises an alert in ModSecurity. While
you're there, you might want to consider doing other things, such as canceling the victim’s
application session. You might want to consider including an error code in the request (e.g.,
as a parameter), which will help you establish exactly where the problem was. You should
also be aware that this communication mechanism can be discovered and subverted by the
attacker. Therefore, dont use any information obtained from such requests for anything
other than logging.

Communicating Back to the Server 217

Interrupting Page Rendering

Perhaps you'll decide that detection isn't enough and that you want to prevent in-browser
attacks. JavaScript doesn’t offer a way to stop page rendering, but you can do the next best
thing: redirect the user someplace else using location.replace(). In my tests, the invoca-
tion has the effect of effectively stopping rendering and moving the browser elsewhere. For
example:

location.replace("http://www.example.com/security-error.html");

Stopping page rendering when location.replace() is invoked is a side effect; in general,
you shouldn’t expect it to work across all browsers or to continue to work in the browsers
it works in today. For example, some browsers may continue to process JavaScript while
another page is being loaded. You should assume that some attacks may get through.

If you choose to implement prevention in this way, don't forget to add a user-friendly
explanation for the sudden redirection to another page. Your users will appreciate it. The
advantage of using prevention like this is that it also notifies you of the problem: whenever
someone accesses that special page, you’ll know that user has been attacked.

Using External JavaScript Code

In the current implementation of content injection, you're limited to the content you can
put in a parameter of the append and prepend actions. In particular, you won't be able to
inject any nonprintable characters. You can escape a single quote with a backslash, but that’s
the only escape option ModSecurity supports at present. If you do run into trouble, you can
always store the JavaScript code in a separate file and inject a link to it.

If you can place a file onto the root of the web site being protected, use this:

SecAction "id:6000,phase:3,pass,nolog,prepend: '<script src=/ids.js></script>""
If you have several web sites and youd like to use one file for all of them, use a fully qualified
address:

SecAction "id:6000,phase:3,pass,nolog,\
prepend: '<script src=https://www.example.com/ids.js></script>

Finally, if you need to construct the address dynamically, you can do that by injecting
JavaScript that will generate the HTML code needed to include the external JavaScript:

SecAction "id:6003,phase:3,pass,nolog,\
prepend: '<script>document.write(unescape(\"<script src=\"\" \
+ document.location.protocol + \"//localhost/ids.js\'>%3ce
/script>\"));</script>""

218 Chapter 11: Content Injection

Several aspects of this rule need explaining:
1. Use document.write() to output HTML to the document body.
2. Make sure to escape all single and double quotes in the code.

3. The preceding example used URL encoding (converting the opening angle bracket
to %3c) in combination with unescape() to deactivate the closing script tag. This
approach also can be used if you need special characters in JavaScript (and you can’t
write them directly because of ModSecurity’s poor escape syntax).

4. The code uses the document.location.protocol property, which will be http: for
plaintext connections and https: for encrypted connections.

Communicating with Users

Another interesting application of content injection is “talking” to application users. Ages
ago, I wrote some code, practically as a party trick, that would detect access using vulnera-
bility scanners (e.g., Arachni) and send a message back that we don't like being probed.

Such a rule can be as simple as this example:

SecRule REQUEST HEADERS:User-Agent "@rx Arachni" \
"id:6000,phase:3,pass,\
prepend: '<script>alert(\"Use of Arachni is strictly forbidden\");</script>

If your site uses sessions and you've configured ModSecurity to track them, you can send
per-session messages that expire after a period of time. I will show you how to do that, using
an example that detects the word attack anywhere in request parameters (let’s pretend we’re
detecting an SQL injection attack), then sets a message that will be displayed to the same
session for 60 seconds (even in requests that don’t contain the attack). The example consists
of only two rules.

The first rule is used to trigger the message:

The following rule triggers a message. Session must have been
established (using setsid) beforehand; otherwise the execution
of this rule will cause an error.

SecRule ARGS "@rx attack" \
"id:2000,phase:2,pass,log,msg: 'Detected SQL Injection',\
setvar:SESSION.message_flag=1,\
expirevar:SESSION.message flag=60,\
setvar:'SESSION.message=SQL Injection is lame'"

The detection itself is trivial, but the rest needs an explanation:

1. The first setvar action (setvar:SESSION.message_flag=1) creates a per-session flag
used to indicate that a message exists.

Communicating with Users 219

2. The expirevar action (expirevar:SESSION.message flag=60) is used to delete the
SESSION.message flag variable after 60 seconds.

3. The second setvar action (setvar:'SESSION.message=SQL Injection is lame') de-
fines the message.

A second rule is used to detect the presence of SESSION.message flag and display the
message stored in SESSION.message:

The following rule displays the message for 60 seconds. As before, the prepend
action must be executed only if the response content type is right.
SecRule SESSION:message flag "@eq 1" \

"id:6000,phase:3,pass,nolog,\

prepend: '<script>alert(\"%{SESSION.message}\");</script>""

When, after 60 seconds, the expirevar statement from the first rule kicks in, the
SESSION.message flag variable will be deleted and the message will go away.

Summary

To me, content injection is a fascinating ability of ModSecurity, because you get to move
into the ever-complex world of JavaScript. You can extend your virtual hand into every
single user’s browser and take a look at what they know. It’s all right to look, by the way,
because you’ll have access only to the pages that come from your own sites; everything else
will be off-limits.

We've only scratched the surface with this brief chapter. Other ideas can be found in an
inspirational presentation by Denis Kolegov and Arseny Reutov about client-side WAF
capabilities using JavaScript.! Another interesting topic to discuss is injecting code into
responses in order to run a browser fingerprint regularly and detect session hijacking when
the fingerprint of the browser changes. The Client]S project is a good start in this direction.?

In the next chapter, we'll discuss a topic that’s possibly even more interesting than the one
covered here: the ability to write rules in Lua, a proper programming language.

1 How to Protect Web Applications using JavaScript (SlideShare, Denis Kolegov and Arseny Reutov, 24 May 2016)
2 ClientJS project (Jack Spirou, retrieved 11 April 2017)

220 Chapter 11: Content Injection

http://www.slideshare.net/DenisKolegov/wafjs-how-to-protect-web-applications-using-javascript
https://clientjs.org/

12 Writing Rules in Lua

The ModSecurity Rule Language is relatively easy to use, but it’s fairly limited. After all,
the directives have to obey the Apache configuration syntax, so there’s only so much we
can do within those boundaries. I like to think that you can use the rule language to get
80 percent of your tasks done, and quickly too: common things are simple to do; complex
things are possible. At some point, however, the rule language stops being an appropriate
tool for the task, and you need to look elsewhere. Starting with ModSecurity 2.5, you can
write rules in Lua, a fast and memory-efficient scripting language.! These attributes make
Lua very popular with game programmers, who are always trying to get that extra ounce of
performance.

The advantage of Lua is that it’s a proper programming language, which means that youre
limited only by your programming skills. The disadvantage, as you might expect, is a
performance penalty. Some of that penalty comes from the fact that Lua scripts need to
be interpreted at runtime, and some comes about because the current implementation in
ModSecurity isn’t as efficient as it could be. That said, performance is adequate in most
cases.

There are two ways in which Lua can be used to enhance your rulesets. First, you can write
detection rules in it. Second, you can write scripts that are executed on a rule match. The
remainder of this chapter explains both of these features.

Rule Language Integration

Although the chapter introduction made it sound like Lua rules are separate from the rule
language, that’s not true. In ModSecurity, Lua is implemented as a rule language extension,
via the SecRuleScript directive. For example, this is how you run a Lua script:

SecRuleScript /path/to/script.lua \
id:2000,phase:2,deny, log

1L ua web site (Lua.org, retrieved 5 January 2017)

221

http://www.lua.org

If you compare that to the SecRule directive, you’ll see the variables and the operators are
gone. They’re replaced with a single parameter, which is the location of the Lua script you
wish to run. That means the script will choose which variables it wants to inspect and in
what order. The action list is still there, though. You can see that the rule in the previous
example runs in phase 2 and that it logs and blocks on a match.

Lua Rules Skeleton

Every Lua rule needs to have an entry point that ModSecurity can find: the main function.
This is what the simplest Lua rule looks like:

function main()
-- Never match
return nil;
end

As you may suspect, the previous rule doesn’t do much. It only returns nil, which means
that there’s no match. For a Lua rule to match, it needs to return a message:

function main()

-- Always match

return "Error message";
end

The beauty of the way Lua is integrated with ModSecurity is that once you return an error
message, the rule language takes over and processes the action list. Thus, with Lua rules,
you still get to use what you already know. For example, you provide all the metadata
information for Lua rules in the exact same way as you do for normal rules:

SecRuleScript /path/to/script.lua \
id:2000,phase:2,deny,log,rev:1,severity:3

Whatever you can do with a SecRule directive, you can do with SecRuleScript.

Accessing Variables

Once inside a Lua rule, the first thing you’ll need to do is access some variables. The
following example retrieves two variables from ModSecurity:

function main()
-- Retrieve remote IP address
local remote_addr = m.getvar("REMOTE_ADDR");

-- Retrieve username
local username = m.getvar("ARGS.username", {"lowercase"});

222 Chapter 12: Writing Rules in Lua

-- Admin access outside 192.168.1.1 not allowed

if ((username == "admin") and (remote addr ~= "192.168.1.1")) then
return "Admin sign-in not allowed from IP address: " .. remote addr;

end

-- No match
return nil;
end

A call to the m.getvar() function will retrieve the variable named in the first parameter.
In the example, the value of REMOTE_ADDR is retrieved and placed into the Lua variable
remote addr.

The function has an optional second parameter. If used, it must contain a list of transforma-
tion functions that will be applied to the variable before it’s returned to Lua. In the example,
the value of ARGS.username is retrieved from ModSecurity, passed through the lowercase
transformation function, and placed into the Lua variable username.

It's also possible to retrieve more than one variable at once, but for that you use the
m.getvars() function (note the additional s in the name). The following example retrieves
all request parameters, then examines them one at a time:

function main()
-- Retrieve all parameters
local vars = m.getvars("ARGS", {"lowercase", "htmlEntityDecode"});

-- Examine all variables
for i = 1, #vars do
-- Examine one value
if (string.find(vars[i].value, "<script")) then
return ("Suspected XSS in variable: " .. vars[i].name .. ".");
end
end

-- Nothing wrong found
return nil;
end

The m.getvars() function works differently. It doesn’t return just the value of the requested
variable; instead, it returns an object with two members: name, which contains the name of
the variable, and value, which contains the corresponding value. The preceding example
demonstrates how both are used.

Accessing Variables 223

Setting Variables

You can modify or add transaction variables from within a Lua script using the m.setvar()
function. The following example will take an existing variable and increment it by 1:

function main()
-- Retrieve parameter
local var = m.getvar("TX.test");

var = var + 1;
m.setvar ("TX.test", var);

-- No match
return nil;
end

With this addition, you can set variables from Lua in two ways. One way is to use a setvar
action triggered by a Lua script returning with a match. The second way enables you to set
variables directly from the script, even if there’s no match.

Logging
Sometimes, a Lua rule won't work as you expect, but you won’t have any clue as to why. You
can troubleshoot your scripts by emitting debug log messages, using the m.1log() function:

function main()
-- Log something
m.log(3, "Hello World from Lua!");

-- Never match
return nil;
end

The m.1log() function takes two parameters, the first of which is the desired log level (1-9);
the second is the desired message. Messages with log level 1-3 will be written to the error
log and to the debug log.

Lua Actions

With the addition of Lua, the exec action was extended to support Lua natively. Normally,
you supply the exec action with a path to an external script, and ModSecurity executes
that script in a separate process. If the script path ends with .lua, however, ModSecurity
will process the script using the embedded Lua interpreter. This approach not only achieves

224 Chapter 12: Writing Rules in Lua

better performance (no need to start a new process), but also gives the Lua script access to
the current transaction context:

SecRule ARGS "@rx test" \
id:2000,phase:2,pass,log,exec:/path/to/script.lua

A Lua script called from exec must define the same entry point as all other Lua scripts.
There’s no need to return anything from the main() function:

function main()

-- Log something

m.log(3, "Lua executed in exec!");
end

Now, the preceding example looks deceptively simple—so much so that you may wonder
what use Lua could possibly have. The answer is that you can do pretty much anything you
want from Lua. You not only get the programming language and the standard Lua libraries,
but you also get access to a number of extensions that take care of filesystem access, sockets,
database access, and so on. In addition, because Lua scripts executed in this way have
access to the transaction context and the persistent storage, the result is a seamless scripting
extension of ModSecurity.

Summary

This chapter is short, but the topic is important enough to warrant its own chapter. When
implementing a particular functionality using just the rule language fails or when the
resulting rules are too difficult to maintain, you’ll turn to Lua. Support for Lua has been
around for many years, but while everybody agrees it has big potential, it hasn’t seen the
wide deployment it deserves. I suspect the standard ModSecurity rule language is good
enough to perform all day-to-day tasks, and the few people with more advanced recipes
hardly publish their code. Maybe this will change in the future. It would certainly be
welcome to see more ModSecurity Lua scripts being published.

In the next chapter, we'll focus on XML processing. The XML features of ModSecurity aren’t
used by all installations, but those that do use them find the capabilities crucial.

Summary 225

13 Handling XML

ModSecurity has very good XML support, which is made possible through tight integration
with libxml2.! Libxml2 is one of the fastest XML libraries available, making it suitable
for the performance-sensitive work of ModSecurity. The integration is seamless, effectively
making XML payloads just another source of data to which you can apply your usual
rule-writing techniques. The following functionality is supported:

o XML parsing
o DTD validation
o« XML Schema validation

o XPath expressions

Note

You don’t want to use ModSecurity as an XML testing tool, because the entire
cycle (write rules, then send payload, then analyze the debug log) is very slow. You
should instead use an XML validation tool. Probably the best option is xmllint,
because it’s based on the same library used by ModSecurity.

The examples used in this chapter were adapted from the sample written by Steve Traut for
the former XMLBeans project.?

XML Parsing

Although ModSecurity is capable of parsing XML, it won't attempt any parsing by default.
XML parsing is resource-intensive, and many installations don’t need it. Even when they
do, recognizing that XML parsing is needed isn't something that can be done in a way
that works for everyone. Other request body processors (URLENCODED and MULTIPART) rely on

LlibxmI2 web site (xmlsoft, retrieved 5 January 2017)
2 XMLBeans project (Apache.org, retrieved 5 January 2017)

227

http://xmlsoft.org
https://xmlbeans.apache.org

using a standardized content type for detection when theyre needed, but there’s no such
option for XML.

To enable XML parsing, you'll have to go through the manual request body processor
activation. There are two steps you'll need to take:

1. Analyze the request to determine whether XML parsing is needed. Most requests
won't need XML parsing enabled. Figuring out which ones do will depend on the
exact content type used by your application. In many cases, the Content-Type header
will contain text/xml, and that’s what I'll assume in my examples.

2. Instruct ModSecurity to use the XML request body processor for the requests that do
need it.

For example:

Detect XML payloads and activate XML parsing
SecRule REQUEST HEADERS:Content-Type "@rx ~text/xml$" \
id:1000,phase:1,pass,t:none,t:lowercase,nolog,ctl:requestBodyProcessor=XML

This example uses the @rx operator, but a straightforward @streq would have worked as
well. Notice how I used t:lowercase to ensure that the comparison is case-insensitive
(which is always appropriate when working with Content-Type).

It's important always to use phase 1 (REQUEST HEADERS) when determining request body
processors. Request body parsing is performed directly after phase 1 completes, and the
processor choice must be made before then.

When you’re writing ModSecurity rules, you usually have to test a lot, and when you're
working with XML, you’ll have to test even more. For my testing, I use the command line
utility curl. With this tool in hand, you can construct and send raw HTTP requests to your
web server to test your rules. For example, I used the following file (which I named xml.t)
to test XML parsing:

<employees>
<employee>

<name>Fred Jones</name>

<address location="home">
<street>999 Aurora Ave.</street>
<city>Seattle</city>
<state>WA</state>
<zip>98115¢</zip>

</address>

<address location="work">
<street>2022 152nd Avenue NE</street>
<city>Redmond</city>
<state>WA</state>
<z1p>98052</zip>

228 Chapter 13: Handling XML

</address>
<phone location="work">(425)555-0100</phone>
<phone location="home">(206)555-0101</phone>
<phone location="mobile">(206)555-0102</phone>
</employee>
</employees>

To send a file to a web server, you specify the server information (in the following example,
both the IP address and the port) and the file you want to send. I also often use the verbose
switch (-v), which makes the tool output all traffic to standard output:

curl -v --data "@xml.t" --header "Content-Type: text/xml" http://127.0.0.1:8080

Let’s see how ModSecurity processed this test request. First, the rule ran in phase 1 to check
the value of the Content-Type request header. It matched, causing the ctl action to set the
request body processor to XML. The following is the debug log output at level 8 (which is
shorter than the level 9 output, but equally meaningful in this case):

[4] Recipe: Invoking rule 20fa670; [file "/usr/local/modsecurity/etce
/rules.conf"] [line "139"] [id "1000"].

[5] Rule 20fa670: SecRule "REQUEST HEADERS:Content-Type" "@rx ~text/xml$" <
"phase:1,1d:1000,pass,t:none,t:lowercase,nolog,ctl:requestBodyProcessor=XML"
[4] Transformation completed in 3 usec.

[4] Executing operator "rx" with param "~text/xml$" against REQUESTe
_HEADERS:Content-Type.

[4] Operator completed in 10 usec.

[4] Ctl: Set requestBodyProcessor to XML.

[2] Warning. Pattern match "~text/xml$" at REQUEST_HEADERS:Content-Type. [file "e
/usr/local/modsecurity/etc/rules.conf"] [line "139"] [id "1000"]

[4] Rule returned 1.

Then, we see the second phase starting and ModSecurity reading the request body and
forwarding it to the XML parser:

[4] Second phase starting (dcfg 20b7878).
[4] Input filter: Reading request body.
[4] XML: Initialising parser.

[4] XML: Parsing complete (well formed 1).

The last line indicates the completion of XML parsing. It also indicates that the XML was
well-formed. If it wasn't, the message would display a 0 instead of a 1. This message makes
a good point, in fact: you need to not only enable XML parsing, but also verify that it was
successful.

To verify how well XML parsing went in a rule, use the REQBODY_PROCESSOR_ERROR variable,
as you do with all request body processors. I covered this topic in detail in the section called
“Handling Processing Errors” in Chapter 3. If you follow my advice from that section and

XML Parsing 229

use the rule to check for request body processor errors (also reproduced here), you'll be
covered for XML parsing errors, too:

Verify that we've correctly processed the request body.
As a rule of thumb, when failing to process a request body
you should reject the request (when deployed in blocking mode)
or log a high-severity alert (when deployed in detection-only mode).
SecRule REQBODY PROCESSOR ERROR "!@eq 0" \
"id:2000,phase:2,block,t:none,log,\
msg: 'Failed to parse request body: %{REQBODY_PROCESSOR_ERROR_MSG}'"

We can check easily whether that’s correct. Make a copy of xml.t, calling the new file
xml-invalid.t, then replace one of the angle brackets with a space. When you send such a
modified file to the server, the debug log will report the problem:

[4] Second phase starting (dcfg e9a878).

[4] Input filter: Reading request body.

[4] XML: Initialising parser.

[2] XML parsing error: XML: Failed parsing document.

Then, a few lines down in the log file, you'll see the second rule be triggered:

[4] Recipe: Invoking rule 16490c0; [file "/usr/local/modsecurity/etce
/rules.conf"] [line "144"] [id "2000"].

[5] Rule 16490c0: SecRule "REQBODY PROCESSOR ERROR" "!@eq 0" "phase:2,id:2000,blocke
,t:none,log,msg: 'Failed to parse request body: %{REQBODY PROCESSOR ERROR MSG}'"
[4] Transformation completed in 2 usec.

[4] Executing operator "l!eq" with param "0" against REQBODY PROCESSOR_ERROR.

[4] Operator completed in 6 usec.

[4] Rule returned 1.

[1] Access denied with code 403 (phase 2). Match of "eq 0" against "REQBODY<
_PROCESSOR_ERROR" required. [file "/usr/local/modsecurity/etc/rules.conf"] [line <
"144"] [id "2000"] [msg "Failed to parse request body: XML parsing error: XML:
Failed parsing document."]

Note

Just because an XML payload isn’t well-formed doesn’t mean that your subsequent
rules aren’t going to run. They will run, but they’ll have access only to a partial
XML tree, created until the parsing error was encountered. What this tree will
contain depends on the nature of the error. If you choose not to block on a
request body processor failure, then you need to at least ensure that you don’t rely
on the results of your subsequent XML rules. For example, you could evaluate
REQBODY_PROCESSOR_ERROR again and skip over them. If you don’t mind working
with a partial XML payload, or even if that’s desired, then you don’t need to do
anything.

230 Chapter 13: Handling XML

DTD Validation

Sometimes, you'll be happy to work with a partial (invalid) XML payload, but other times
you’'ll want to perform further validation. The validation requires one further rule, in which
you specify the type of validation and the file that contains the rules. ModSecurity supports
two types of XML validation: DTD (short for Document Type Definition) and Schema
validation. First, let’s look at DTD validation:

SecRule XML "@validateDTD /path/to/apache2/conf/xml.dtd" \
"1d:2000,phase:2,block,log,msg: 'Failed to validate XML payload against DTD'"

The xml.dtd file, which contains a DTD for the XML payload used earlier in this section,
contains the following lines:

<IELEMENT phone (#PCDATA)>

<IATTLIST phone location CDATA #REQUIRED>
<IELEMENT street (#PCDATA)>

<IELEMENT city (#PCDATA)>

<IELEMENT state (#PCDATA)>

<IELEMENT zip (#PCDATA)>

<IELEMENT address (street, city, state, zip)>
<IATTLIST address location CDATA #REQUIRED>
<IELEMENT name (#PCDATA)>

<!ELEMENT employee (name, address+, phone+)>
<!ELEMENT employees (employee)>

When you submit the same XML payload as before, you get the following result:

[4] Recipe: Invoking rule 13bfa70; [file "/usr/local/modsecurity/etce

/rules.conf"] [line "148"] [id "2000"].

[5] Rule 13bfa70: SecRule "XML" "@validateDTD /usr/local/apache/conf/xml.dtd"
"phase:2,log,1d:2000,block,msg: 'Failed to validate XML payload against DTD'"

[4] Transformation completed in 0 usec.

[4] Executing operator "validateDTD" with param "/usr/local/apache/conf/xml.dtd" <
against XML.

[4] XML: Successfully validated payload against DTD: /usr/local/apache/conf/xml.dtd
[4] Operator completed in 544 usec.

[4] Rule returned o.

Note

The @validateDTD operator returns a match if it fails to validate and no match if
everything is all right.

When validation fails, the error messages from libxml2 will be recorded as notices (level
3), which means that they’ll appear in the debug log, the audit log, and the Apache error

DTD Validation 231

log. For example, when I changed the payload to transmit the employee name with the first
name and the last name separately, as follows:

<firstname>Fred</firstname>
<lastname>Jones</lastname>

I received three libxml2 errors in return:

[3] Element employee content does not follow the DTD, expecting (name , address+ ,
phone+), got (firstname lastname address address phone phone phone)

[3] No declaration for element firstname

[3] No declaration for element lastname

There was also one fatal error from the validation rule itself:

[1] Access denied with code 403 (phase 2). XML: DTD validation failed. [file "/usre
/local/modsecurity/etc/rules.conf"] [line "148"] [id "2000"] [msg "Failed to ¢
validate XML payload against DTD"]

XML Schema Validation

The XML Schema validation rule is functionally identical to that used for DTD validation:

SecRule XML "@validateSchema /path/to/apache2/conf/xml.xsd" \
"id:2000,phase:2,block,log,msg: 'Failed to validate XML payload against schema'"

XML Schemas allow for much stricter validation, but the rule files are much more com-
plicated. The following is the XML Schema equivalent of the DTD used in the previous
section:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="employees">
<xs:complexType>
<xs:sequence>
<xs:element name="employee" type="employeeType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="employeeType">
<Xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="address" type="addressType" maxOccurs="unbounded"/>
<xs:element name="phone" type="phoneType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="addressType">

232 Chapter 13: Handling XML

<Xxs:sequence>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:NCName"/>
<xs:element name="state" type="xs:NCName"/>
<xs:element name="zip" type="xs:integer"/>
</xs:sequence>
<xs:attribute name="location" type="xs:NCName" use="required"/>
</xs:complexType>
<xs:complexType name="phoneType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="location" type="xs:NCName" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:schema>

Libxml2, the underlying XML library used by ModSecurity, is known to not fully implement
the XML Schema standards. You may encounter validation problems that aren’t a result of
a problem in a request, but are the result of the incomplete XML Schema implementation
in libxml2. In that case, your best bet is to try to upgrade the library to a newer version
(ModSecurity will use the same library version as used by your operating system). If that
doesn’t help, try seeking help from the libxml2 users mailing list.

XML Namespaces

Initially, XML was simple and easy to understand, like the one example I've used many
times in this chapter. As it gained in popularity, however, people decided that they wanted
to combine XML documents of different types and needed a way to distinguish which
elements belong to which types. Thus, XML namespaces were born.

To demonstrate how namespaces work, I've reworked the original example to split it into
two namespaces—one for the employees element and the other for the address element:

<employees xmlns="http://www.example.org/employees">
<employee>

<name>Fred Jones</name>

<a:address location="home" xmlns:a="http://www.example.org/address">
<a:street>999 Aurora Ave.</a:street>
<a:city>Seattle</a:city>
<a:state>WA</a:state>
<a:zip>98115¢</a:zip>

</a:address>

<a:address location="work" xmlns:a="http://www.example.org/address">
<a:street>2022 152nd Avenue NE</a:street>
<a:city>Redmond</a:city>

XML Namespaces 233

<a:state>WA</a:state>
<a:zip>98052</a:zip>
</a:address>
<phone location="work">(425)555-0100</phone>
<phone location="home">(206)555-0101</phone>
<phone location="mobile">(206)555-0102</phone>
</employee>
</employees>

To use a namespace, choose a prefix (it can be anything) and associate it with a namespace
URL In the preceding example, the prefix is a (nice and short) and the URI is http://
www.example.org/address (it's not necessary for the URI to work; its role is just to serve as a
unique identifier). Once a namespace has been introduced, you need to rewrite all the tags
that belong to it to use the prefix.

Of course, the original XML Schema we used for validation wont work any more. The
assumption, with the new XML payload, is that two Schemas are needed. The address
Schema (xml-address.xsd) defines the rules only for addresses:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://www.example.org/address"
xmlns="http://www.example.org/address">

<xs:element name="address" type="addressType"/>

<xs:complexType name="addressType">
<Xs:sequence>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:NCName"/>
<xs:element name="state" type="xs:NCName"/>
<xs:element name="zip" type="xs:integer"/>
</xs:sequence>
<xs:attribute name="location" type="xs:NCName" use="required"/>
</xs:complexType>

<xs:complexType name="phoneType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="location" type="xs:NCName" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:schema>

234 Chapter 13: Handling XML

The employees Schema (xml-employees.xsd) defines the rules for everything else:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://www.example.org/employees"
xmlns="http://www.example.org/employees"
xmlns:a="http://www.example.org/address">

<xs:import namespace="http://www.example.org/address"
schemaLocation="xml-address.xsd"/>

<xs:element name="employees">
<xs:complexType>
<xs:sequence>
<xs:element name="employee" type="employeeType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="employeeType">
<Xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element ref="a:address" maxOccurs="unbounded"/>
<xs:element name="phone" type="phoneType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="phoneType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="location" type="xs:NCName" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:schema>

Notice how this second Schema uses the XML Schema import facility to refer to xml-
address.xsd and then uses the address element by reference.

When you need to validate a document that uses multiple Schemas, as in the preceding
example, the parameter that you supply to @validateSchema must be the path to the main
Schema. You should also place all dependent Schemas in the same directory as the main
one, which will enable libxmlI2 to find them. The validation rule is the same as before:

SecRule XML "@validateSchema /path/to/apache2/conf/xml-employees.xsd" \
"id:2000,phase:2,block,log,msg: 'Failed to validate XML payload against schema'"

If the validation fails, you’ll see the following information in your debug log:

XML Namespaces 235

[4] Executing operator "validateSchema" with param "/usr/lib/modsecurity/etce
/xml-employees.xsd" against XML.

[9] Target value: "[XML document tree]"

[3] Element '{http://www.example.org/employees}name': Element content is not <
allowed, because the type definition is simple.

[4] Operator completed in 1297 usec.

[4] Rule returned 1.

XPath Expressions

XML Path Language (XPath) is a language for addressing parts of an XML document. The
addressing is done by writing XPath expressions, which are powerful and easy to use. I've
compiled several examples in Table 13.1, but if you've never worked with XPath expressions
before, I recommend that you go through the very nice tutorial available at zvon.org.?

Table 13.1. XPath expression examples

XPath expression Description

/ Root element
/employees/employee All employees

//address An address, under any parent element
/7* All elements in payload
/employees/employee/address[2] The second employee address
//phone[@location="work"] All work phone numbers

XPath expressions can be used only against the XML collection, and only in phase 2
(request) and later—for example:

SecRule XML:/employees/employee/name/text() "!@rx ~[a-zA-Z]{3,33}$" \
"id:2000,phase:2,deny,msg: 'Invalid employee name'"

Unless you've worked with XPath expressions before, the results may not always be what
you expect. Some XPath expressions will give tidy results; for example, the one used in the
preceding example will return Fred Jones. However, that happens only when you select a
simple element (one that doesn’t have any children). If the element you select has children,
you get back everything the children contain too, excluding the markup.

Try this, for example:
Get the complete second employee address

SecRule XML:/employees/employee/address[2] "@rx TEST" \
"id:2000,phase:2,deny"

3 XPath tutorial (zvon.org, retrieved 5 January 2017)

236 Chapter 13: Handling XML

http://www.zvon.org/comp/m/xpath.html

The address fragment in the XML payload contains the following text (notice the whites-
pace, which I left the same as it is in the original payload):

<address location="work">
<street>2022 152nd Avenue NE</street>
<city>Redmond</city>
<state>WA</state>
<zip>98052</zip>

</address>

The debug log reveals what was used for matching (now in log level 9):

[4] Recipe: Invoking rule 1a173c0; [file "/usr/local/modsecurity/etce
/rules.conf"] [line "159"] [id "2000"].

[5] Rule 1a173c0: SecRule "XML:/employees/employee/address[2]" "@rx TEST" ¢
"phase:2,log,id:2000,deny"

[4] Transformation completed in 0 usec.

[4] Executing operator "rx" with param "TEST" against XML:/employees/employee<
/address[2].

[9] Target value:
WA 98052 "

2011 152nd Avenue NE Redmond ©

You can see that the whitespace is all there, including the newline characters.

As a rule of thumb, when working with XML you should restrict yourself to the analysis
of specific fields. Bulk analysis (e.g., using //*, which returns all elements in an XML
payload) just isn’t going to be very effective, because even smaller payloads will be broken
into dozens, and larger ones into possibly hundreds and thousands of small pieces. The
performance of bulk XML matching is likely to be very bad. When the //* expression is
used with our short XML example, it creates 16 variables.

XPath and Namespaces

Once you move away from simple XML documents to those using namespaces, your XPath
expressions might stop working. For example, we could have used the following “clean”
XPath expression to validate ZIP codes in the first XML example:

SecRule XML://address/zip "!@rx ~\d+$" \
"1d:2000,phase:2,deny,msg: 'Invalid ZIP code

To get the rule working with an XML document that uses prefixes, like the second XML
example, you could try to modify the XPath expression to include the prefixes, but that
will just cause XPath evaluation to fail, because libxml2 will try to match the prefix to a
namespace but won't know how. You'll see XML: Unable to evaluate xpath expression in
the debug log. Even if libxml2 didn’t complain, this approach wouldn’t work, because the

XPath and Namespaces 237

choice of prefix is in the hands of the request sender. You don’t get to control it on the
server.

The solution is to use prefixes in XPath expressions, but also tell libxml2 about the names-
pace, using the xmlns action:

SecRule XML://a:address/a:zip "!@rx ~\d+$" \
"id:2000,phase:2,deny,msg: 'Invalid ZIP code',xmlns:a=http://www.example.orge
/address"

This example will work as it would in the original example, returning two ZIP codes. It will
even work if the sender chooses an entirely different prefix.

XML Inspection Framework

The validation examples so far all assumed one validation per request, but an average
application will have many entry points, with a different set of rules needed for each. In this
section, I sketch a framework that you can use whenever you need to deal with XML in
ModSecurity.

Establish the baseline for all XML entry points
<Location /api/>
Is the Content-Type correct?
SecRule REQUEST HEADERS:Content-Type "!@rx ~text/xml$" \
"id:1000,phase:1,deny,t:lowercase,msg: 'Invalid Content-Type for XML API'"
Activate XML parsing
SecAction id:1001,phase:1,pass,t:lowercase,nolog,ctl:requestBodyProcessor=XML

Was the payload successfully parsed?

SecRule REQBODY_PROCESSOR ERROR "!@eq 0" \
"id:2000,phase:2,deny,t:none,log, \
msg: 'Failed to parse request body: %{REQBODY PROCESSOR_ERROR MSG}'"

By default, we assume that XML validation did not take place
SecAction id:2001,phase:2,pass,nolog,setvar:TX.xml_validated=0
</Location>

Entry point One
<Location /api/entryPointOne.php>
Validate payload first
SecRule XML "@validateDTD /path/to/conf/entryPointOne.dtd" \
"id:2002,phase:2,deny,msg: 'Failed to validate XML against ¢
entryPointOne.dtd""

Restrict employee name to known good characters only

238 Chapter 13: Handling XML

SecRule XML:/employees/employee/name/text() "!@rx ~[a-zA-Z]{3,33}$" \
"id:2003,phase:2,deny,msg: 'Invalid employee name'"

Validation was successful
SecAction id:2004,phase:2,pass,nolog,setvar:TX.xml_validated
</Location>

Entry point Two
<Location /api/entryPointTwo.php>
Validate payload first
SecRule XML "@validateDTD /path/to/conf/entryPointTwo.dtd" \
"id:2005,phase:2,deny,msg:'Failed to validate XML against <
entryPointTwo.dtd""

Implement additional restrictions
...

Validation was successful
SecAction id:2006,phase:2,pass,nolog,setvar:TX.xml_validated
</Location>

Finally, verify that the entry point was valid
<Location /api/>
The xml_validated flag will only be set after a
successful validation
SecRule TX:xml validated "!@eq 1" \
"id:2007,phase:2,deny,msg: 'Invalid API entry point
</Location>

With this example framework, we achieve the following:

1. First, there is one <Location> section in which we establish the baseline for all XML
entry points. It's here that we activate XML parsing but also reject all requests that
aren’t XML. The assumption is that the /api/ folder contains only XML entry points.
This assumption is usually valid, because API calls don't need any accompanying files
(e.g., embedded images, stylesheet files, etc.).

2. With an additional one <Location> section per entry point, we ensure that we apply
the correct validation rules to each entry point, followed by the per-entry point rules.

3. We finalize the XML rules by adding another global <Location> section, in which
we use one rule that checks whether validation was successfully completed. This final
check is needed in case a request specifies an unlisted entry point, in which case the
xml_validated flag will be 0 (set in the first global section).

XML Inspection Framework 239

Note

Remember that configuration merging for the <Location> directive works in the
same order in which the sections appear in the configuration file. Thus, the rules
will be processed as they appear in the configuration too. If you aren’t familiar with
Apache’s configuration merging, there’s a refresher available in the section called
“Apache Configuration Syntax” in Chapter 7.

With XML rules, as with all other rules, the best approach is to use whitelisting, or positive
security. Through this approach, you look at every single bit of data you accept and check
that it’s correct. You don't try to discover “bad” characters (that would be negative security,
or blacklisting). DTD validation generally isn't powerful enough, but you may be able to use
XML Schemas as a good validation mechanism. Then, if there are parts that you can't cover
with Schemas, you should use custom XPath expressions as the last line of validation.

Summary

Being able to properly process XML is always important, especially if you're dealing with
XML-based APIs. In ModSecurity, generally you'll find everything you need to parse, vali-
date, and inspect XML in a meaningful way. If you find certain parts of the XML support
difficult to work with, that’s probably not because of ModSecurity, but because the XML
world continues to increase in complexity. No effort on the part of ModSecurity developers
can make that go away, and you may have to resort to advanced validation techniques using
external logic developed in Lua or some other language.

There’s only one chapter left in this User Guide, and it will teach you how to extend
ModSecurity by writing native code, which is something that you may need to do when you
reach the edges of ModSecurity’s capabilities. Don’t worry; it’s easy to do. I promise!

240 Chapter 13: Handling XML

14 Extending the Rule Language

The ModSecurity rule language is pretty good at meeting users’ requirements, but some-
times you'll need it to do something that it can’t. We looked at Lua previously, but if you
want to stay in ModSecurity and you can program in C, then there’s an easy way to extend
the rule language. There are four extension points, enabling you to add custom variables,
operators, transformation functions, and request body processors.

Because ModSecurity is part of Apache, it doesn’t have to implement its own extension in-
frastructure: you extend ModSecurity by writing Apache modules. This is a great time-saver
if you have previous Apache programming experience. However, even if you don't, finding
people who do generally will be easy. After all, Apache is one of the most popular programs
ever.

For years, the common way to learn how to write Apache modules was to study existing
modules, especially the ones bundled with Apache itself. (My favorite has always been
mod_rewrite.) If you prefer a book, then Nick Kew’s The Apache Modules Book (Prentice
Hall, 2007) is the standard reference on the topic. Nick’s book is now 10 years old, but it’s
still invaluable. For simple efforts, what’s in this section should be sufficient.

With or without the book, you should familiarize yourself with the Apache Portable Run-
time (APR) and Apache Portable Runtime Utility (APR-Util) libraries, which form the
infrastructure on top of which Apache is built.! Whenever you program an Apache module,
you have full access to the APR and APR-Util libraries—which is quite handy, because they
contain tons of useful functionality.

The remainder of this chapter will introduce a template module, which you can use as a
starting point for your ModSecurity extensions, and then implement four modules, one for
each extension point. For the examples, I'll use the sample code included with ModSecurity
and stored in the ext subfolder.

1 Apache Portable Runtime Project (Apache.org, retrieved 5 January 2017)

241

https://apr.apache.org

Extension Template

First, T'll show you how to create a template module that establishes the infrastructure on
top of which we’ll build later.

Note

Before you begin, ensure that you have the ability to compile custom Apache
modules. This is the same process as that for custom-compiling ModSecurity itself.
In addition, you’ll need the source code for the exact version of ModSecurity you're
writing extensions for.

The template module is a complete Apache module, which you should be able to compile
and install. You can practice with it to ensure that your environment has all the right com-
ponents for custom Apache module development. The following is the complete module
source code:

#include "httpd.h"
#include "http_core.h"
#include "http_config.h"
#include "http log.h"
#include "http protocol.h"
#include "ap_config.h"
#include "apr_optional.h"

#include "modsecurity.h"

Jx*

* This function is just a placeholder in this template.

*/

static int hook pre config(apr pool t *mp, apr pool t *mplog, apr pool t *mptmp) {
/* Empty for now, but will be used later. */

return OK;
}
[k
* Register to be invoked before configuration begins.
*/

static void register hooks(apr_pool t *p) {
ap_hook_pre config(hook pre config, NULL, NULL, APR_HOOK LAST);

}
/**

* This structure is used by Apache to determine that a dynamic
* library it is loading is a genuine module.

*/

242 Chapter 14: Extending the Rule Language

module AP_MODULE_DECLARE_DATA security template module = {

};

STANDARD20_MODULE_STUFF,
NULL,

NULL,

NULL,

NULL,

NULL,

register _hooks

There are three points of interest in the module:

1.

The security template module structure is used by Apache to verify that the dynamic
library is indeed a module. The name is important and should be unique. You'll use
the same name when you instruct Apache to load the module later on.

The security template module initialization structure points to the register hook
callback, which is going to be the module’s main initialization entry point.

The register_hook callback registers another callback, hook_pre config, which is
invoked every time Apache is reconfigured. This callback doesn’t do anything in the
template module, but we'll add to it later.

You'll be compiling the template module using the apxs Apache tool. If it isn't in your
path, it will be in the bin/ subfolder of your Apache installation. Assuming you placed the
source code in the file called mod_security template.c, invoke the following to compile the
template module:

$ apxs -cia \

-1/path/to/modsecurity/source code \
-I/usr/include/libxml2 \
mod_security template.c

Note

On Linux, processes are known to crash when the dynamic libraries they’re using
change. It’s a best practice to shut down Apache before adding or removing any of
its modules.

The apxs command line in the example uses five switches, which perform the following

functions:
1. Compile the module (switch -c).
2. Copy the compiled module to the directory in which all other Apache modules are
stored (switch -1).
3. Activate the module by adding the correct LoadModule directive to the configuration

(switch -a).

Extension Template 243

4. Point to the location of the ModSecurity include files (switch -I/path/to/
modsecurity/source_code).

5. Point to the location of the libxml2 include files (switch -I/usr/include/1ibxml2).

The activation step will work if you have at least one existing LoadModule directive in your
configuration. The last line will say something similar to the following:

[activating module 'security template' in /usr/local/apache/conf/httpd.conf]

If you have a more elaborate configuration layout and the apxs tool can't find at least
one existing LoadModule directive in your httpd.conf, you'll have to activate the module
manually by adding the following line to the configuration:

LoadModule security template module modules/mod_security template.so

The first parameter must match the module name used in the source code. You should
always place a ModSecurity extension module after the LoadModule line that activates Mod-
Security itself. If you don’t, ModSecurity might not be able to recognize the newly added
function.

If Apache starts with the new LoadModule line in the configuration, you've successfully
completed this step.

Adding a Transformation Function

Starting from the template module, implementing a new transformation function requires
two steps. First, you need to implement a single function, which will be called by ModSe-
curity every time a transformation is needed. All transformation functions (in C) use the
following signature:

static int reverse(apr_pool t *mptmp, unsigned char *input,
long int input_len, char **rval, long int *rval len)

{
/* Transformation code here. */
/* Return 1 if you change the input, 0 if you don't/ */
return 1;

}

To examine the implementation of the built-in transformation functions, refer to the
re_tfns.c file in the ModSecurity source code.

In general, you should use the same name for the C function as you intend to use for the
transformation function in ModSecurity. The five parameters in the signature are as follows:

1. apr_pool t *mptmp: APR memory pool you can use to allocate memory from

244 Chapter 14: Extending the Rule Language

unsigned char *input: Pointer to the input string you need to transform
long int input_len: Length of the input string

char **rval: Pointer in which to return the output string

ook wN

long int rval len: Length of the output string

Note

Remember that ModSecurity doesn't use NUL-terminated strings. Always use the
input_len parameter, which contains the input length.

If your transformation always results in an output string that’s equal to or shorter than the
input string, you should make your changes in place, overwriting the input string. By doing
so, you save on memory allocation, thus speeding up your transformation function. In this
case, the rval pointer should point to the input string on return.

If the output can be longer, use the mptmp memory pool to allocate from, then point
rval to the newly allocated memory chunk. The memory you allocate will be deallocated
automatically when ModSecurity clears the temporary memory pool. Any other memory
allocation method would create a memory leak, because deallocation is always manual and
you won't have an opportunity to invoke it.

The following is the complete source code of the transformation function example included
with ModSecurity:

/**
* This function will be invoked by
* ModSecurity to transform input.
*/
static int reverse(apr _pool t *mptmp, unsigned char *input,
long int input_len, char **rval, long int *rval len)
{
/* Transformation functions can choose to do their
* thing in-place, overwriting the existing content. This
is normally possible only if the transformed content
is of equal length or shorter.

*
*
*
* If you need to expand the content use the temporary
* memory pool mptmp to allocate the space.

*/

/* Reverse the string in place, but only if it's long enough. */
if (input_len > 1) {
long int i = 0;
long int j = input_len - 1;
while(i < j) {
char ¢ = input[i];

Adding a Transformation Function 245

}

input[i] = input[j];
input[j] = c;

i++;

==

}

/* Tell ModSecurity about the content
* we have generated. In this case we

* merely point back to the input buffer.

*/
*rval = (char *)input;
*rval _len = input_len;

/* Must return 1 if the content was
* changed, or 0 otherwise.
*/

return 1;

The return value from a transformation function should always be 1 if the content you're
returning is different than the content you received on input, and 0 otherwise. Even if you
placed the output in a newly allocated memory chunk, if it’s the same, the return code
should be 0. Returning the correct response code will allow ModSecurity to work slightly
faster when there are no changes, but you shouldn’t worry too much about it. If keeping
track of whether you made a change is difficult or expensive, just return 1.

Now that you have the function, you need to register it with ModSecurity. To do so, use the
Apache mechanism called optional functions, which is a two-step process:

1. Ask Apache to find the registration function, which will have been exported by

The following example is an implementation of this process:

Vais

* Register transformation function with ModSecurity.

*/

ModSecurity beforehand.

2. Register the new transformation function.

static int hook pre config(apr_pool t *mp, apr_pool t *mplog, apr_pool t *mptmp) {

void (*fn)(const char *name, void *fn);

/* Look for the registration function
* exported by ModSecurity.
*/

fn = APR_RETRIEVE_OPTIONAL FN(modsec_register tfn);

if (fn) {
/* Use it to register our new

246

Chapter 14: Extending the Rule Language

* transformation function under the
* name "reverse".
*/
fn("reverse", (void *)reverse);
} else {
ap_log error (APLOG_MARK, APLOG ERR | APLOG_NOERRNO, 0, NULL,
"mod_tfn reverse: Unable to find modsec register tfn.");

}

return OK;

}

Once you restart Apache, the new transformation function will be equal to those that come
with ModSecurity. You should always test your new functionality; for example, add the
following rule to the configuration:

SecRule ARGS "@rx test" \
id:2000,phase:2,deny,t:none,t:reverse,log

Then, if you send a request with parameter p for which the value is set to tset (the opposite
of test), you should get a 403 response in return. The following debug log excerpt shows the
new reverse transformation function working as expected:

[4] Recipe: Invoking rule 939638; [file "/usr/local/modsecurity/rules.conf] <
[line "139"] [id "2000"].

[5] Rule 939638: SecRule "ARGS" "@rx test" "phase:2,id:1007,deny,t:reverse,log"
[9] T (0) reverse: "test"

[4] Transformation completed in 12 usec.

[4] Executing operator "rx" with param "test" against ARGS:p.

[9] Target value: "test"

[4] Operator completed in 9 usec.

[4] Rule returned 1.

[9] Match, intercepted -> returning.

[1] Access denied with code 403 (phase 2). Pattern match "test" at ARGS:p. [file ¢
"/usr/local/modsecurity/rules.conf"] [line "139"] [id "2000"]

Adding an Operator

Creating new operators is slightly more difficult, because two functions are needed: there’s
an additional (and optional) initialization step, which allows your code to do some work
at configure-time and reuse it at runtime. The split of the work sometimes allows for
significant performance improvements. In ModSecurity, the source code for the built-in
operators is in the re_operators.c file.

Adding an Operator 247

The new operator example adds a new string-matching function based on the Boyer-
Moore-Horspool algorithm.? T won’t show the code for the algorithm itself here, instead
assuming that the following two functions are already implemented:

static void initBoyerMooreHorspool(const char *pattern, int patlength,
int *bm_badcharacter_array);

static int BoyerMooreHorspool(const char *pattern, int patlength,
const char *text, int textlen, int *bm_badcharacter array);

If you're curious, of course, you can always look at the implementation at the end of the
mod op_strstr.c file (included with ModSecurity). The string-matching algorithm does
require initialization, so we'll be using both steps. The initialization code is as follows:

/**

* Operator parameter initialization entry point.

*/

static int op_strstr_init(msre rule *rule, char **error msg) {
/* Operator initialization function will be called once per
* statement where operator is used. It is meant to be used
* to check the parameters to see whether they are present
* and if they are in the correct format.

*/

/* In this example we just look for a simple nonempty parameter. */
if ((rule->op_param == NULL)||(strlen(rule->op_param) == 0)) {
*error _msg = apr_psprintf(rule->ruleset->mp,
"Missing parameter for operator 'strstr'.");
return 0; /* ERROR */

/* If you need to transform the data in the parameter into something
* else you should do that here. Simply create a new structure to hold
* the transformed data and place the pointer to it into rule->op param data.
* You will have access to this pointer later on.
*/
rule->op_param data = apr_pcalloc(rule->ruleset->mp,
ALPHABET SIZE * sizeof(int));
initBoyerMooreHorspool(rule->op _param, strlen(rule->op_param),
(int *)rule->op param data);

/* 0K */
return 1;

2 Boyer-Moore-Horspool algorithm (Wikipedia, retrieved 5 January 2017)

248 Chapter 14: Extending the Rule Language

http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm

Unlike with the transformation function example, here we get to work with ModSecurity
structures directly. The first parameter of the operator initialization is a pointer to the
msre_rule structure (full definition in re.h). There are two fields in this structure that you’ll
want to use:

o op_param: A NUL-terminated string that may contain a parameter for your operator
 op_param_data: A generic pointer for your operators’ use

The idea is to check the parameter available in op_param and do something with it, then
perform the initialization work and store a pointer to the results in op_param_data. When
your operator is invoked at runtime, it will have access to the same msre_rule structure and
thus to op_param_data. Should you need an example, the code for the @rx and @pm operators
demonstrates how parameter preparation is done. Also note the following important points:

o Ifyou need to allocate memory, use the memory pool in rule->ruleset->mp, as in the
example.

« If your initialization fails, generate an error string, store it in error_msg (the second
function parameter), and return a zero.

The operator execution code is equally simple:

/**

* Operator execution entry point.

*/

static int op_strstr_exec(modsec_rec *msr, msre rule *rule,
msre_var *var, char **error msg)

{

/* Here we need to inspect the contents of the supplied variable. */

/* In a general case it is possible for the value

* to be NULL. What you need to do in this case

* depends on your operator. In this example we return
* a "no match" response.

*/

if (var->value == NULL) return 0; /* No match. */

/* Another thing to note is that variables are not C strings,
* meaning the NULL byte is not used to determine the end

* of the string. Variable length var->value len should be

* used for this purpose.

*/

if (BoyerMooreHorspool(rule->op param, strlen(rule->op param),
var->value, var->value len, (int *)rule->op param_data) >= 0)
{
*error msg = apr_psprintf(msr->mp, "Pattern match \"%s\" at %s.",
rule->op_param, var->name);

Adding an Operator 249

}

return 1; /* Match. */

}

return 0; /* No match. */

This time, you’'ll receive four parameters:

1.
2.
3.

4.

modsec_rec *msr: The structure in which all transaction data is stored
msre_rule *rule: The same rule structure you received in the initialization phase
msre_var *var: The variable structure, which holds the data you need to inspect

char **error_msg: An error message pointer, which you can point at an error message

The data you need to inspect is stored in a msre var instance, which has the following
layout:

struct msre_var {

const char *name;

const char *value;
unsigned int value_len;
const char *param;

const void *param_data;
msre_var_metadata *metadata;
msc_regex_t *param_regex;
unsigned int is_negated;
unsigned int is_counting;

};

Although it looks complex, you only need to be concerned with two fields:

o const char *value: Pointer to the variable the operator needs to inspect

o unsigned int value_len: Length of the variable

After you inspect the variable, return 0 if there’s no match and 1 if there is.

The operator registration step is conceptually identical to that used for transformation
functions, except that you use the modsec_register operator optional function:

static int hook pre config(apr pool t *mp, apr pool t *mplog,

apr_pool t *mptmp)

{

void (*fn)(const char *name, void *fn_init, void *fn_exec);
/* Look for the registration function
* exported by ModSecurity.
*/
fn = APR_RETRIEVE OPTIONAL FN(modsec_ register operator);
if (fn) {

250 Chapter 14: Extending the Rule Language

/* Use it to register our new
* transformation function under the
* name "reverse".
*/

fn("strstr", (void *)op_strstr init, (void *)op strstr_exec);

} else {
ap_log_error(APLOG MARK, APLOG ERR | APLOG NOERRNO, 0, NULL,
"mod_op strstr: Unable to find modsec_register operator.");

}

return OK;

}

When you compile and enable this module, it gives you access to the new @strstr operator.
You can use it in your rules as follows:

SecRule ARGS "@strstr attack" \
id:2000,phase:2,deny,log

Adding a Variable

To generate new variables, you typically need to implement one function call. The example
that comes with ModSecurity is split across three functions, but that’s done for code reuse.
Here’s the simplified code:

static int var remote addr port generate(modsec_rec *msr, msre var *var,
msre_rule *rule, apr table t *vartab, apr pool t *mptmp)

{
msre var *rvar = NULL;
const char *value = apr psprintf(mptmp, "%s:%d",
msr->remote_addr, msr->remote port);
if (value == NULL) return 0;
/* Generate new variable. */
rvar = apr_pmemdup(mptmp, var, sizeof(msre var));
rvar->value = value;
rvar->value len = strlen(rvar->value);
/* Add variable to the collection. */
apr_table addn(vartab, rvar->name, (void *)rvar);
return 1;
}

The following parameters are provided:

Adding a Variable 251

1
2.
3

4.

modsec_rec *msr: Structure in which all transaction data is stored
msre_var *var: Variable template
apr_table t *vartab: Collection of the variables being prepared for inspection

apr_pool t *mptmp: Memory pool from which you can allocate memory

Creating new variables is a four-step process:

1.

Create the variable data. How you do that depends on the nature of the data, but it
can be as easy as using a single apr_sprintf() call (as in the example).

Create a new msre_var structure, duplicating from the one already provided in var,
and populate the value and value_len fields.

Using apr_table_addn(), add the newly created msre_var structure to the vartab
collection.

Return 1 to indicate that you've added one variable to the collection. If you create
more than one variable (by repeating steps 1 through 3), keep track of how many new
variables there are and return the correct value at the end of the function.

Variable registration is slightly more involved, but only because you need to help ModSecu-
rity do most of the runtime work for you:

static int hook pre config(apr_pool t *mp, apr_pool t *mplog,

apr_pool t *mptmp)

{
void (*register fn)(const char *name, unsigned int type,
unsigned int argc_min, unsigned int argc_max,
void *fn_validate, void *fn_generate,
unsigned int is cacheable, unsigned int availability);
/* Look for the registration function
* exported by ModSecurity.
*/
register fn = APR_RETRIEVE OPTIONAL FN(modsec_register variable);
if (register fn) {
/* Use it to register our new
* variable under the
* name "REMOTE_ADDR PORT".
*/
register_fn(
"REMOTE_ADDR_PORT",
VAR _SIMPLE,
0, 0,
NULL,
var_remote_addr port generate,
VAR DONT CACHE,
PHASE_REQUEST_HEADERS
252 Chapter 14: Extending the Rule Language

);
} else {
ap_log_error(APLOG MARK, APLOG ERR | APLOG NOERRNO, 0, NULL,
"mod_var remote addr port: Unable to find modsec register variable.");

}

return OK;

}

To register a variable, you need to use eight parameters, but apart from that, the registration
process doesn't hold any surprises:

1. const char *name: Variable name.

2. unsigned int type: Variable type; use VAR_SIMPLE to indicate that you will return only
one value, or VAR_LIST to indicate the possibility of returning multiple values.

3. unsigned int argc_min: Variable parameter definition; use 0 if you don’t need to use a
parameter, or 1 if you do.

4. unsigned int argc_max: Variable parameter definition; use 0 if you don’t allow a
parameter, or 1 if you do.

5. void *fn_validate: Optional pointer to the parameter validation function.
6. void *fn_generate: Pointer to the generation function.

7. unsigned int is_cacheable: Is the variable cacheable? If generating the variable is
expensive and the value isn’t likely to change during the duration of a transaction, set
it to VAR_CACHE. Otherwise, set it to VAR_DONT CACHE.

8. unsigned int availability: Phase in which the variable becomes
available: PHASE_REQUEST HEADERS, PHASE REQUEST BODY, PHASE RESPONSE_HEADERS,
PHASE_RESPONSE_BODY, or PHASE_LOGGING. ModSecurity should use this value to ensure
that the variable isn't referenced in the rules before it’s available. (I say should because
ModSecurity doesn’t do so at the moment.)

As you know, in ModSecurity variables can have parameters. For example, you use ARGS:p
to request the parameter named p, and ARGS:/*p/ to request all the parameters that start
with p. If you allow parameters for your variables, the single parameter will be placed in
var->param. How you interpret the parameter depends on the nature of the variable. For
inspiration, you can look up the var_args_generate() function in re_variables.c, which
implements the ARGS collection.

Finally, if you think you can speed up variable retrieval by using configure-time initializa-
tion, supply a separate validation function when you register your variable—for example:

static char *var generic_list validate(msre ruleset *ruleset, msre var *var) {
/* Is it OK if there's no parameter provided? Return NULL if
* it is. If you require a parameter and you correctly registered

Adding a Variable 253

* the variable, your validation function will never be invoked.
*/
if (var->param == NULL) return NULL;

/* Validate the value in var->param. */

/...

/* Perform your initialization work. */

/...

/* Store initialization data for subsequent retrieval. */
var->param_data = my_opaque_pointer;

/* No error. */
return NULL;

}

If you need more examples, all the ModSecurity variables are implemented in the
re_variables.c file.

Adding a Request Body Processor

Every request body processor needs to implement three entry points: initialization, data
processing, and finalization. The initialization and finalization functions will be invoked
only once per request body, but the data-processing function may be invoked many times,
each time with a chunk of request body data. The example in this section implements a
simple request body processor that counts only the number of bytes seen.

First, register your request body processor in the hook_pre_config() function:

static int hook pre config(apr_pool t *mp, apr pool t *mplog,
apr_pool t *mptmp)
{
void (*fn)(const char *name,
void *fn_init, void *fn_process, void *fn_complete);

/* Look for the registration function exported by ModSecurity. */
fn = APR_RETRIEVE OPTIONAL FN(modsec_ register regbody processor);
if (fn) {
/* Use it to register our new request body parser functions under
* the name "EXAMPLE".
*/
fn("EXAMPLE",
(void *)example init,
(void *)example process,
(void *)example complete);

254 Chapter 14: Extending the Rule Language

else {
ap_log error(APLOG_MARK, APLOG ERR | APLOG_NOERRNO, 0, NULL,
"mod_reqbody example: Unable to register");

}

return OK;

}

Before we can move to the initialization, we need to define a structure to store the example
context. Let’s keep this simple in our example by defining a structure that holds only the
length of the body:

/**
* Define the example context structure
*/
typedef struct example ctx {
unsigned long length;
} example ctx;

Initialization is usually straightforward; use it to create a request body processor context,
which you’ll need to keep the state during parsing:

J**
* This function will be invoked to initialize the processor. This is
* probably only needed for streaming parsers that must create a context.
*/
static int example_init(modsec_rec *msr, char **error msg) {
if (error _msg == NULL) return -1;
*error_msg = NULL;

ap_log_error(APLOG MARK, APLOG_INFO | APLOG_NOERRNO, 0, NULL,
"mod_regbody example: init()");

msr->reqbody processor ctx = apr_pcalloc(msr->mp, sizeof(example ctx));
if (msr->reqbody processor ctx == NULL) {
/* Set error message and return -1 if unsuccessful */
*error_msg = apr_pstrdup(msr->mp,
"failed to create example regbody processor context");
return -1;

}

/* Return 1 on success */
return 1;

}

Finalization is usually equally simple, although some parsers will need to do more work
here. Remember that you shouldn’t deallocate your context. Because all allocation is per-

Adding a Request Body Processor 255

formed from a memory pool, ModSecurity will release the allocated memory all at once at
the end of transaction.

In our example, at the end of parsing, we'll simply print the number of bytes seen in the
request body to the log:

/**

This function is called to signal the parser that the request body is
complete. Here you should do any final parsing. For nonstreaming parsers
you can parse the data in msr->msc_regbody buffer of length
msy->msc_reqbody length. See modsecurity request body end urlencoded() in
msc_regbody.c for an example of this.

R R S

*/
static int example_complete(modsec_rec *msr, char **error msg) {
example ctx *ctx = (example ctx *)msr->regbody processor ctx;

if (error_msg == NULL) return -1;
*error_msg = NULL;

ap_log error(APLOG MARK, APLOG INFO | APLOG NOERRNO, 0, NULL,
"mod_reqbody example: complete()");

ap_log error(APLOG_MARK, APLOG INFO | APLOG _NOERRNO, 0, NULL,
"mod_regqbody example: request body length=%lu", ctx->length);

/* Return 1 on success */
return 1;

}

The processing function is usually where all the work happens. You'll be provided data
in small pieces as it’s received from the client. On every invocation, you’ll retrieve your
context, perform some processing, and return, signaling success or failure.

There’s one additional duty that you need to perform: keeping track of the actual data bytes
seen in a request body. There’s no universal definition of data bytes, so you're free to define
it as you see fit. For example, the multipart/form-data parser will exclude markup and file
content when counting data bytes. The data size you calculate here is what’s checked for
limits specified by the SecRequestBodyNoFilesLimit directive:

Jx*
* This function will be invoked whenever ModSecurity has data to
* be processed. You probably at least need to increment the no_files
* length, but otherwise this is only useful for a streaming parser.
*/
static int example process(modsec_rec *msr, const char *buf,

unsigned int size, char **error msg)

{

example ctx *ctx = (example ctx *)msr->regbody processor ctx;

256 Chapter 14: Extending the Rule Language

if (error msg == NULL) return -1;
*error msg = NULL;

ap_log error(APLOG_MARK, APLOG INFO | APLOG_NOERRNO, 0, NULL,
"mod_regbody example: process()");

/* Need to increment the no files length if this is not an uploaded file.
* Failing to do this will disrupt some other limit checks.
*/

msr->msc_regbody no_files length += size;

/* Check for an existing context and do something interesting
* with the chunk of data we have been given.
*/
if (ctx != NULL) {
ctx->length += size;

}
/* Return 1 on success */
return 1;
}
Summary

In this final chapter of the book (not counting the reference manual that follows in the
second part), I led you through the process of adding new elements to the ModSecurity
rule language. The extension mechanism of ModSecurity really is a case of standing on the
shoulders of giants: you get to use a polished and well-documented extension mechanism
implemented for Apache, while the developers (of ModSecurity) get to support extensions
with only a dozen lines of code.

With this chapter, you've reached the end of the book, and you now know pretty much
everything you need to about ModSecurity. This may be where your real work begins,
because although you now know the tool, keeping up with web application security—which
you need to understand in order to use ModSecurity in the right way—is often a full-time
job.

But it’s a fun one!

Summary 257

|| Reference Manual

This part of the book contains an unofficial ModSecurity Reference Manual, which started its
life in February 2010 as a fork of the official documentation (with permission of Breach Securi-
ty, Inc.). Although the intention was to contribute all improvements back to ModSecurity, with
version 2.6 the project moved the documentation from DocBook into a wiki, which effectively
made synchronization impossible.

15 Directives

This chapter documents the configuration directives currently available in ModSecurity.
There are three types of directives: base configuration items, directives that make up the rule
language, and a group that is best summarized under advanced and optional features. The
type is indicated with every directive.

With the ModSecurity directives being part of the web server’s configuration, they need
to conform to that configuration format—namely, that of Apache. This makes some of the
ModSecurity directives hard to read. This is especially the case with the SecRule command,
the workhorse of the ModSecurity rule language.

With every directive described in this chapter, you'll see the syntax, the default value,
a usage example, the scope, and the version in which the directive appeared. Where no
default value is defined (either due to being part of the rule language, for which this
wouldn’t make any sense, or due to being an advanced feature activated via setting a value),
this is indicated.

The scope within the Apache configuration is usually Any. This means that a directive can
be used on the main server level, within a virtual host, and also within a container context.
However, some directives are limited to a certain scope, whereas others are inherited
downwards and can be overwritten. When there’s an exception to this rule, it's explained in
the text.

Finally, there’s an indication of when a certain directive or feature appeared in ModSecurity.
Some directives have been removed from ModSecurity or have been renamed; these direc-
tives are listed with their name and an indication of when they were removed.

SecAction

Description: Unconditionally processes the action list it receives as the first and only
parameter. The syntax of the parameter is identical to that of the third parameter of SecRule.

Syntax: SecAction "actioni,action2,action3,...”

Default: none

261

Example: SecAction "id:2000,phase:2,pass,log,msg: 'Example
Directive type: Rule language

Scope: Any

Version: 2.0.0

This directive is commonly used to set variables and initialize persistent collections using
the initcol action—for example:

SecAction "id:1000,phase:1,nolog,initcol:RESOURCE=%{REQUEST FILENAME}"

Note

Starting with ModSecurity 2.7.0, it's mandatory to assign a unique rule ID to every
SecAction and SecRule directive that appears in your configuration.

SecArgumentSeparator

Description: Specifies which character to use as the separator for application/x-www-form-
urlencoded content.

Syntax: SecArgumentSeparator CHARACTER
Default: &

Example: SecArgumentSeparator ;
Directive type: Configuration

Scope: Any; main before 2.7.0

Version: 2.0.0

This directive is needed if a backend web application is using a nonstandard argument
separator. Applications are sometimes (very rarely) written to use a semicolon separator.
You shouldn’t change the default setting unless you establish that the application youre
working with requires a different separator. If this directive is not set properly for each web
application, then ModSecurity will not be able to parse the arguments appropriately and the
effectiveness of the rule matching will be significantly decreased.

SecAuditEngine

Description: Configures the audit logging engine.
Syntax: SecAuditEngine On|O0ff|RelevantOnly
Default: 0ff

Example: SecAuditEngine RelevantOnly

262 Chapter 15: Directives

Directive type: Configuration
Scope: Any
Version: 2.0.0

The SecAuditEngine directive is used to configure the audit engine, which logs complete
transactions. The audit engine is described in detail in the section called “Audit Log” in
Chapter 4. ModSecurity is currently able to log most but not all transactions. Transactions
involving errors (e.g., 400 and 404 transactions) use a different execution path, which
ModSecurity doesn’t support.

Note

If you need to change the audit log engine configuration on a per-transaction basis
(e.g., in response to some transaction data), use the ctl action.

The following example demonstrates how SecAuditEngine is used:

SecAuditEngine RelevantOnly
SecAuditlog /var/log/apache/modsec-audit.log
SecAuditlLogParts ABCFHZ
SecAuditLogType Serial
SecAuditLogRelevantStatus ~(?:5/4\d["4])
The possible values for the audit log engine are as follows:
 On: Log all transactions.
o 0ff: Do not log any transactions.

« RelevantOnly: Only log the transactions that have triggered a warning or an er-
ror or that have a status code considered to be relevant (as determined by the
SecAuditLogRelevantStatus directive).

SecAuditlLog

Description: Defines the path to the main audit log file (serial logging format) or the
concurrent logging index file (concurrent logging format). When used in combination with
mlogc (only possible with concurrent logging), this directive defines the mlogc location and
command line.

Syntax: SecAuditlog LOG_PATH

Default: None

Example: SecAuditlLog /var/log/apache/modsec-audit.log
Directive type: Configuration

Scope: Any

SecAuditLog 263

Version: 2.0.0

This file will be used to store audit log entries if the serial audit logging format is used. If the
concurrent audit logging format is used, this file will be used as an index and will contain
a record of all audit log files created. If youre planning to use concurrent audit logging to
send your audit log data off to a remote server, you'll need to deploy the ModSecurity Log
Collector (mlogc), like this:

SecAuditlog "|/usr/bin/mlogc /etc/modsecurity/mlogc.conf"

Note

This audit log file is opened on startup, when the server typically still runs as root.
You shouldn’t allow non-root users to have write privileges for this file or for the
directory it’s stored in.

SecAuditlLog2

Description: Defines the location and command-line parameters of a secondary remote
logging facility. See SecAuditLog for more details.

Syntax: SecAuditLog2 "|MLOGC_PATH MLOGC_CONFIG_PATH"

Default: None

Example: SecAuditlLog2 "|/usr/bin/mlogc /etc/modsecurity/mlogc2.conf"
Directive type: Configuration

Scope: Any

Version: 2.1.2

The purpose of SecAuditlog2 is to make logging to two remote servers possible, which
is typically achieved by running two instances of the mlogc tool, each with a different
configuration (in addition, one of the instances will need to be instructed not to delete the
files it submits). This directive can be used only if SecAuditLog was previously configured
and only if the concurrent logging format is used.

SecAuditLogDirMode

Description: Configures the mode (permissions) of any directories created for the concur-
rent audit logs, using an octal mode value as a parameter (as used in chmod).

Syntax: SecAuditLogDirMode OCTAL_MODE
Default: 0750
Example: SecAuditLogDirMode 0700

264 Chapter 15: Directives

Directive type: Configuration
Scope: Any
Version: 2.5.10

The default mode for new audit log directories (0750) only grants read/write access to the
owner (typically the account under which Apache is running—e.g., apache) and read access
to its group. If access from other accounts is needed (e.g., for use with mpm-itk), then you
may use this directive to grant additional read and/or write privileges. You should use this
directive with caution to avoid exposing potentially sensitive data to unauthorized users.
This feature isn’t available on operating systems that do not support octal file modes.

Note

The process umask may still limit the mode if it’s being more restrictive than the
mode set using this directive.

SecAuditLogFileMode

Description: Configures the mode (permissions) of any files created for concurrent audit
logs using an octal mode (as used in chmod).

Syntax: SecAuditLogFileMode OCTAL_MODE
Default: 0640

Example: SecAuditLogFileMode 0600
Directive type: Configuration

Scope: Any

Version: 2.5.10

This feature isn’t available on operating systems that do not support octal file modes. The
default mode only grants read/write access to the account writing the file. If access from
another account is needed (using mpm-itk is a good example), then this directive may be
required. However, use this directive with caution to avoid exposing potentially sensitive
data to unauthorized users.

Note

The process umask may still limit the mode if it's being more restrictive than the
mode set using this directive.

See SecAuditLogDirMode for controlling the mode of created audit log directories.

SecAuditLogFileMode 265

SecAuditLogFormat

Description: Define the format of the audit log file or files.
Syntax: SecAuditLogFormat JSON|Native

Default: Native

Example: SecAuditLogFormat JSON

Directive type: Configuration

Scope: Any

Version: 2.9.1

The alternative JSON audit log format is available only if support for it has been compiled
into the ModSecurity module. This depends on the availability of the YAJL library during
the compilation.

SecAuditlLogParts

Description: Defines which parts of each transaction are going to be recorded in the audit
log. Each part is assigned a single letter; when a letter appears in the list, the corresponding
part will be recorded. The list of all parts is included in the following information.

Syntax: SecAuditlogParts PART LETTERS
Default: ABCFHZ

Example: SecAuditlLogParts ABEFHIJZ
Directive type: Configuration

Scope: Any

Version: 2.0.0

Note

The format of the audit log format is documented in detail in the section called
“Audit Log” in Chapter 20.
Available audit log parts:
 A: Audit log header (mandatory).
 B: Request headers.

o C:Request body (present only if the request body exists and ModSecurity is configured
to intercept it).

266 Chapter 15: Directives

D: Reserved for original response headers; not implemented yet.

« E: Original response body (present only if ModSecurity is configured to intercept
response bodies, and if the audit log engine is configured to record it). Intermediary
response body is the same as the actual response body unless ModSecurity intercepts
the intermediary response body, in which case the actual response body will contain
the error message (either the Apache default error message, or the ErrorDocument

page).
o F: Final response headers (excluding the Date and Server headers, which are always
added by Apache in the late stage of content delivery).

« G: Reserved for the actual response body; not implemented yet.
o H: Audit log trailer.

o I.This part is a replacement for part C. It will log the same data as C in all cases,
except when multipart/form-data encoding is used, in which case it will log a fake
application/x-www-form-urlencoded body that contains information about parameters
but not about the files. This is handy if you don’t want to have (often large) files stored
in your audit logs.

« J: Contains information on the uploaded files (requests using multipart/form-data
encoding). Available as of 2.6.0.

o K: This part contains a full list of every rule that matched (one per line) in the order
they were matched. The rules are fully qualified and will thus show inherited actions
and default operators. Available as of 2.5.0.

« Z: Final boundary; signifies the end of the entry (mandatory).

Note

When listing the parts you want to see in the log, you should keep them in
alphabetical order. Doing otherwise may result in unexpected behavior.

SecAuditLogRelevantStatus

Description: Configures which response status code is to be considered relevant for the
purpose of audit logging.

Syntax: SecAuditlogRelevantStatus REGEX

Default: None

Example: SecAuditLogRelevantStatus ~(?:5|4(2!04))
Directive type: Configuration

Scope: Any

SecAuditLogRelevantStatus 267

Version: 2.0.0

The main purpose of this directive is to allow you to configure audit logging for only
transactions that have a status code that matches the supplied regular expression. For
example, you might want to log all application errors (status code 500). Although you could
achieve the same effect with a rule in phase 5, SecAuditLogRelevantStatus is sometimes
better, because it continues to work even when SecRuleEngine is disabled.

Note

Make sure you set this directive if you want to log requests depending on the status
code. Leaving it empty will have ModSecurity ignore the response status code as
far as the audit log is concerned, because there is no default value for this directive.

SecAuditLogStorageDir

Description: Configures the directory in which concurrent audit log entries are to be
stored.

Syntax: SecAuditlogStorageDir DIR_PATH

Default: None

Example: SecAuditlogStorageDir /var/log/modsecurity/audit
Directive type: Configuration

Scope: Any

Version: 2.0.0

This directive is only needed when concurrent audit logging is used. The directory must
already exist and must be writable by the web server user. Audit log entries are created at
runtime, after Apache switches to a non-root account.

Note

As with all logging mechanisms, ensure that you specify a filesystem location that
has adequate disk space and is not on the main system partition.

SecAuditLogType

Description: Configures the type of audit logging mechanism to be used.
Syntax: SecAuditLogType Serial|Concurrent

Default: None

Example: SecAuditLogType Serial

268 Chapter 15: Directives

Directive type: Configuration
Scope: Any

Version: 2.0.0

The possible values are as follows:

Serial
Audit log entries will be stored in a single file, as specified by SecAuditLog. This is
convenient for casual use, but it can slow down the server, because only one audit log
entry can be written to the file at any one time.

Concurrent
One file per transaction is used for audit logging. This approach is more scalable
when heavy logging is required (multiple transactions can be recorded in parallel).
It’s also the only choice if you need to use remote logging.

SecCacheTransformations

Description: Controls the caching of transformations, which may speed up the processing
of complex rulesets. This feature is disabled by default starting with 2.5.6, when it was
deprecated and downgraded back to experimental.

Syntax: SecCacheTransformations On|Off [OPTIONS]

Default: Off

Example: SecCacheTransformations On "minlen:64,maxlen:0"
Directive type: Configuration (deprecated)

Scope: Any

Version: 2.5.0; deprecated in 2.5.6

The first directive parameter can be one of the following:

o On: Cache transformations (per transaction, per phase) allowing identical transforma-
tions to be performed only once.

« 0ff: Do not cache any transformations, leaving all transformations to be performed
every time they’re needed.

The following options are allowed (multiple options must be comma-separated):

o incremental:on|off: Enabling this option will cache every transformation instead of
just the final transformation. The default is off.

o maxitems:N: Do not allow more than N transformations to be cached. Cache will be
disabled once this number is reached. A zero value is interpreted as unlimited. This

SecCacheTransformations 269

option may be useful to limit caching for a form with a large number of variables. The
default value is 512.

« minlen:N: Do not cache the transformation if the variable’s length is less than N bytes.
The default setting is 32.

« maxlen:N: Do not cache the transformation if the variable’s length is more than N bytes.
A zero value is interpreted as unlimited. The default setting is 1024.

SecChrootDir

Description: Configures the directory path that will be used to jail the web server process.
Syntax: SecChrootDir DIR_PATH

Default: None

Example: SecChrootDir /chroot

Directive type: Other (advanced feature)

Scope: Main

Version: 2.0.0 (not supported on Windows)

The internal chroot functionality provided by ModSecurity works great for simple setups.
One example of a simple setup is Apache serving only static files or running applications us-
ing only built-in modules. You might encounter the following problems with more complex
setups:

1. DNS lookups do not work (because this feature requires a shared library loaded on
demand, after chroot takes place).

2. You cannot send email from PHP, because it wants to use sendmail that resides
outside the jail.

3. In some cases, when you separate Apache from its configuration, restarts and graceful
reloads no longer work.

The best way to use SecChrootDir is as follows:
1. Create /chroot to be your main jail directory.
2. Create /chroot/usr/local/apache inside the jail.
3. Create a symlink from /usr/local/apache to /chroot/usr/local/apache.
4. Now install Apache into /chroot/usr/local/apache.

You should be aware that the internal chroot feature might not be 100 percent reliable. Due
to the large number of default and third-party modules available for the Apache web server,
it isn't possible to verify that the internal chroot works reliably with all of them. A module
working from within Apache can do things that make it easy to break out of the jail. In

270 Chapter 15: Directives

particular, if youre using any of the modules that fork in the module initialization phase
(e.g., mod_fastcgi, mod fcgid, mod_cgid), youre advised to examine each Apache process
and observe its current working directory, process root, and list of open files. Consider what
your options are and make your own decision.

SecCollectionTimeout

Description: Configures the default timeout value for all new collections.
Syntax: SecCollectionTimeout TIMEOUT IN_SECONDS

Default: 3600

Example: SecCollectionTimeout 900

Directive type: Configuration

Scope: Any

Version: 2.6.3

Use SecCollectionTimeout to set the default timeout value for all your collections at once.
You can specify any value up to 2,592,000 (30 days).

SecComponentSignature

Description: Appends a component signature to the ModSecurity signature.
Syntax: SecComponentSignature "COMPONENT NAME/X.Y.Z (COMMENT)"
Default: None

Example: SecComponentSignature "Local Rules/1.2.3"

Directive type: Rule language

Scope: Main

Version: 2.5.0

This directive should be used to make the presence of significant rulesets known. The entire
signature will be recorded in the transaction audit log and appended to the Producer line in
the H part of the log file.

SecConnEngine

Description: Enables the connection tracking engine, which counts active requests in read
and write states. Enabling the engine is a precondition to limit active requests so that you

SecCollectionTimeout 271

can protect yourself from certain DoS attacks. This is done via the SecConnReadStateLimit
and SecConnWriteStateLimit directives.

Syntax: SecConnEngine On|Off|DetectionOnly
Default: SecConnEngine Off

Example: SecConnEngine DetectionOnly
Directive type: Other (advanced feature)
Scope: Any

Version: 2.8.0

If SecConnEngine is set to off, the SecConnReadStatelLimit and SecConnWriteStatelLimit
directives are ignored. When set to DetectionOnly, the engine runs in monitoring-only
mode, in which there is no blocking. To enable blocking, set SecConnEngine to On.

SecConnReadStateLimit

Description: Establishes a per-IP address limit on how many connections are allowed to be
in the request reading state within the Apache request lifecycle (SERVER_BUSY_READ state).

Syntax: SecConnReadStateLimit LIMIT [IP_MATCH OPERATOR]

Default: None

Example: SecConnReadStateLimit 64 "!@ipMatch 192.168.0.0/16"

Directive type: Other (advanced feature)

Scope: Main

Version: 2.8.0 (Apache only)

You need to enable SecConnEngine as a precondition to use this directive. There is an option-
al IP match operator (one of @ipMatch, @ipMatchF, or @ipMatchFromFile), which can be used
to construct whitelists and blacklists. You need to write multiple SecConnReadStateLimit
directives if you want to apply multiple IP matching conditions. If you do this, however,

only the limit defined in the final SecConnReadStateLimit applies. The other limits are
ignored. Thus, it isn’t possible to assign different limits to different IP addresses or ranges.

Controlling the number of connections in the reading state from the same IP address can
be effective against clients that deliberately submit HTTP headers very slowly in order to
keep your server busy with a single request. However, ModSecurity can only bring limited
coverage in this case; Apache’s mod_reqtimeout provides better defense via more granular
controls.

272 Chapter 15: Directives

Note

Apache switches a request from SERVER BUSY READ to SERVER BUSY WRITE surpris-
ingly early in the lifecycle: the moment the request headers have been read
by the server. This means that reading the request body can’t be limited via
SecConnReadStatelimit; you need to use SecConnWriteStateLimit instead.

SecConnlriteStateLimit

Description: Establishes a per-IP address limit on how many connections are allowed to be
in the writing state within the Apache request lifecycle (SERVER_BUSY_WRITE state).

Syntax: SecConnWriteStatelimit LIMIT [IP_MATCH_OPERATOR]
Default: None

Example: SecConnWriteStateLimit 10 "!@ipMatch 192.168.0.0/16"
Directive type: Other (advanced feature)

Scope: Main

Version: 2.8.0 (Apache only)

This directive replaces the former SecWriteStatelLimit. You need to enable SecConnEngine
as a precondition to use this directive. There is an optional IP match operator (one of
@ipMatch, @ipMatchF, or @ipMatchFromFile), which can be used to construct whitelists and
blacklists. You need to write multiple SecConnWriteStateLimit directives if you want to
apply multiple IP matching conditions. If you do this, however, only the limit defined in the
final SecConnWriteStateLimit applies. The other limits are ignored. Thus, it isn’t possible to
assign different limits to different IP addresses or ranges.

Controlling the number of connections in the writing state from the same IP address can
be effective against clients that deliberately send their request bodies very slowly or read
the responses slowly. They do this as a means to keep a server busy with a single request
for as long as possible (DoS). For the reading of the request body, the Apache module
mod_reqtimeout provides better defense via more granular control. This does not apply to
the generation of the response and the transfer, for which SecConnWriteStatelLimit can
provide some protection.

Note

Apache switches a request to SERVER BUSY WRITE as soon as the request headers
have been read by the server. Therefore, even if the request body is still being
read, the request is already in the writing state. The reading of request bodies, the
generation of the response, and its transfer are thus summed up together.

SecConnWriteStateLimit 273

SecContentInjection

Description: Enables content injection using the append and prepend actions.
Syntax: SecContentInjection On|Off

Default: Off

Example: SecContentInjection On

Directive type: Other (advanced feature)

Scope: Any

Version: 2.5.0

This directive provides an easy way to control content injection, no matter what the rules
want to do. It isn't necessary to have response body buffering enabled in order to use
content injection.

SecCookieFormat

Description: Selects the cookie format that will be used in the current configuration
context.

Syntax: SecCookieFormat 0|1
Default: 0

Example: SecCookieFormat 1
Directive type: Configuration
Scope: Any

Version: 2.0.0

The possible values are as follows:

o 0: Use version 0 (Netscape) cookies. This is what most applications use.
« 1: Use version 1 cookies, as defined in RFC 2109.!

SecCookieVoSeparator

Description: This directive allows you to define an alternative separator for multiple cook-
ies on the request header Cookie of the version 0 cookie format.

Syntax: SecCookieV0Separator SEPARATOR
Default: ;

LRFC 2109: HTTP State Management Mechanism (IETF, February 1997)

274 Chapter 15: Directives

https://www.ietf.org/rfc/rfc2109.txt

Example: SecCookieVoSeparator ,
Directive type: Configuration
Scope: Main, virtual host

Version: 2.7.0

Warning

This directive can be used in the main scope, but also on the virtual host level. A
setting in the virtual host scope overwrites the setting in the main level.

SecDataDir

Description: Path at which persistent data (e.g., IP address data, session data, and so on) is
to be stored.

Syntax: SecDataDir DIR_PATH

Default: None

Example: SecDataDir /var/log/modsecurity/data
Directive type: Configuration

Scope: Main

Version: 2.0.0

This directive must be provided before initcol, setsid, and setuid can be used. The
directory to which the directive points must be writable by the web server user.

SecDebuglog

Description: Path to the ModSecurity debug log file.
Syntax: SecDebuglog LOG_PATH

Default: None

Example: SecDebuglog /var/log/apache/modsec-debug.log
Directive type: Configuration

Scope: Any

Version: 2.0.0

Warning

Depending on the log level, the size of the ruleset in use, and the traffic on the
server, the log file will fill very quickly. Choosing a suitable location for the file

SecDataDir 275

I is therefore very important; otherwise, you risk filling a vital disk partition within
minutes.

SecDebuglLoglLevel

Description: Configures the verbosity of the debug log data.
Syntax: SecDebugloglevel 0]1]|2(3|4]5]6]7]8]9

Default: 0

Example: SecDebugloglevel 5

Directive type: Configuration

Scope: Any

Version: 2.0.0

Messages at levels 1-3 are always copied to the Apache error log. Therefore, you can use
level 0 as the default logging level if youre very concerned with performance. Higher log-
ging levels are not recommended in production, because heavy logging affects performance
adversely.

The possible values for the debug log level are as follows:
« 0: No logging
o 1: Errors (intercepted requests) only
o 2: Warnings
» 3: Notices
o 4: Details of how transactions are handled and performance data
o 5: The exact syntax of the rule
« 6-8: Not used (same as 5)

 9: Very detailed debugging information, including macro expansion and the setting of
variables

SecDefaultAction

Description: Defines the default list of actions, which will be inherited by the rules in the
same configuration context.

Syntax: SecDefaultAction "actioni,action2,action3"
Default: "phase:2,log,auditlog,pass"

Example: SecDefaultAction "phase:2,log,deny,tag:'experimental ruleset

276 Chapter 15: Directives

Directive type: Rule language
Scope: Any
Version: 2.0.0

Every rule following a previous SecDefaultAction directive in the same configuration con-
text will inherit its settings unless more specific actions are used. Every SecDefaultAction
directive must specify a disruptive action and a processing phase and cannot contain
metadata actions. As of 2.7.0, the use of transformation functions in SecDefaultAction is
deprecated and results in a warning message at startup.

Warning

SecDefaultAction is not inherited across configuration contexts. For a complete
description of why this may be a problem, see the section called “SecDefaultAction
Inheritance Anomaly” in Chapter 7.

SecDisableBackendCompression

Description: Disables backend compression while leaving frontend compression enabled.
This directive is necessary in reverse proxy mode when the backend servers support re-
sponse compression but you want to inspect response bodies. Unless you disable backend
compression, ModSecurity will see only compressed content, which is not very useful. This
directive is not necessary in embedded mode because ModSecurity performs inspection
before response compression takes place.

Syntax: SecDisableBackendCompression On|Off
Default: Off

Example: SecDisableBackendCompression On
Directive type: Other (advanced feature)
Scope: Any

Version: 2.6.0

Backend servers use compression only when clients request it. Thus, to prevent backend
response compression, ModSecurity removes the Accept-Encoding request header from the
request just before it’s proxied. That way, the backend server will always send a noncom-
pressed response body.

SecGeoLookupDb

Description: Defines the path to the database that will be used for geolocation lookups.
Syntax: SecGeoLookupDb DB_PATH

SecDisableBackendCompression 277

Default: None

Example: SecGeoLookupDb /usr/share/GeoIP/GeolLiteCity.dat
Directive type: Other (advanced feature)

Scope: Any

Version: 2.5.0

ModSecurity relies on the free GeoLite City and GeoLite Country geolocation databases,
which can be obtained from MaxMind.?

SecGsbLookupDb

Description: Defines the path to the database that will be used for Google’s safe browsing
lookups. This lookup only works with a former version of the Google project. It is thus
currently broken and can’t be used.

Syntax: SecGsbLookupDb DB_PATH

Default: None

Example: SecGsbLookupDb /var/log/modsecurity/gsb/goog-hash-malware.dat
Directive type: Other (advanced feature, broken)

Scope: Any

Version: 2.6.0; deprecated in 2.7.0

Note

This directive is now deprecated. ModSecurity’s interface with Google’s Safe Brows-
ing database relied on an old and now unsupported version of the API. Until the
code is upgraded to use a newer version of the API, the Safe Browsing functionality
can’t be used.

Configures a Safe Browsing database for use with the @gsbLookup operator. Databases can
be obtained from Google’s Safe Browsing project.®> You'll be required to register for an API
key, after which you’ll be presented with one or more URLs that you can use to make local
copies of the database(s). Upon startup, ModSecurity loads the databases into memory.
After you refresh the databases on the filesystem, you’ll also need to reconfigure Apache in
order for the changes to be propagated to ModSecurity.

2 MaxMind web site (MaxMind, retrieved 5 January 2017)
3 Google Safe Browsing project (Google Transparency Report, retrieved 5 January 2017)

278 Chapter 15: Directives

https://www.maxmind.com
https://www.google.com/transparencyreport/safebrowsing/

SecGuardianLog

Description: Configures an external program that will receive the information about every
transaction via piped logging.

Syntax: SecGuardianLog "|HTTPD_GUARDIAN PATH"
Default: None

Example: SecGuardianLog "|/usr/bin/httpd-guardian”
Directive type: Other (advanced feature)

Scope: Main

Version: 2.0.0

Guardian logging is designed to send information about every request to an external
program. Because Apache is typically deployed in a multiprocess fashion, which makes
information sharing between processes difficult, the idea is to deploy a single external
process to observe all requests in a stateful manner, providing additional protection.

Currently, the only tool known to work with guardian logging is httpd-guardian, which
is part of the Apache httpd tools project.* The httpd-guardian tool is designed to defend
against denial of service attacks. It uses the blacklist tool (from the same project) to
interact with an iptables-based (on a Linux system) or pf-based (on a BSD system) firewall,
dynamically blacklisting the offending IP addresses. Assuming httpd-guardian is already
configured (look into the source code for the detailed instructions), you only need to set
SecGuardianLog in your Apache configuration to deploy it.

SecGuardianLog sends an access log line resembling an enriched combined format to the
program defined in the path. The script is spawned at the startup of the server. When
httpd-guardian is used, it parses each log line it receives, calculates the number of requests
in a given interval, and takes action if necessary. Because of the way Apache interacts with
programs that use piped logging, all httpd-guardian output will be recorded to the error
log.

SecHashEngine

Description: Enables the ModSecurity hash engine, which can be used to cryptographically
sign all links that appear in an application’s HTML pages or HTTP redirection responses.
The hash engine later verifies protected links and refuses to accept those for which signa-
tures are invalid. This is an advanced security feature that rejects all links that have been
tampered with.

4 Apache httpd tools (SourceForge, retrieved 5 January 2017)

SecGuardianLog 279

http://sourceforge.net/projects/apache-tools/

Syntax: SecHashEngine On|Off

Default: Off

Example: SecHashEngine On

Directive type: Other (advanced feature)
Scope: Any

Version: 2.7.1

The hash engine can work on links and form actions in HTML responses, and links in
HTTP redirect responses. The engine will only activate on responses that use the text/html
content type.

The setting is inherited from the main server scope to the virtual host scope and from there
to the various containers. It is thus possible to overwrite the configuration for a limited
scope so that the hash engine is used only in one part of the application.

A full example with a detailed walkthrough has been presented as a ModSecurity Advanced
Topic of the Week.”

SecHashKey

Description: Defines the secret key used by the hash engine to generate security HMAC
tokens.

Syntax: SecHashKey rand|KEY KeyOnly|SessionID|RemoteIP

Default: rand KeyOnly

Example: SecHashKey 414f6f36-2558-11e6-bc9b-a3019dbf2a81 KeyOnly

Directive type: Other (advanced feature)

Scope: Any

Version: 2.7.1

SecHashKey defines the secret key used to generate HMAC tokens. If the keyword rand is
used, then a random key is created at web server startup. A reload of the server configura-
tion will also reinitialize this secret. Alternatively, use a custom key that you enter instead of
rand.

The three options (KeyOnly, SessionID, and RemoteIP) serve to customize the HMAC token.
With KeyOnly, all clients will receive the same token (which doesn’t provide the same level of
protection). SessionID and RemoteIP will assign individual tokens for each client or session.
SessionID depends on the initialization of the session collection in phase 1 via setsid.

5 ModSecurity Advanced Topic of the Week: HMAC Token Protection (SpiderLabs Blog, 24 January 2014)

280 Chapter 15: Directives

https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-Advanced-Topic-of-the-Week--HMAC-Token-Protection/

SecHashMethodPm

Description: Uses fast text matching to define which elements should receive the hash
engine’s security token.

Syntax: SecHashMethodPm ELEMENT TYPE "stringl [string2 string3 ...]"
Default: None

Example: SecHashMethodPm HashFormAction ".asp .html .php"
Directive type: Other (advanced feature)

Scope: Any

Version: 2.7.1

The SecHashMethodPm directive uses a fast text matching algorithm (the same one used for
the @pm operator) to find elements that need to be processed by the hash engine. The first
parameter specifies the element type; the remaining parameters specify the strings to use for
the matching. It’s possible to issue this directive multiple times for multiple element types or
multiple times for the same element type with different string expressions.

Note

Be careful when using this directive with multiple inheriting configuration scopes.
If a parent scope selects an element for processing, it's not possible to undo its
decision in the child scope.

ModSecurity supports the following element types:
o HashHref: Inject token into href attributes of all tags
 HashFormAction: Inject token into action attributes (typically used by form tags)
o HashIframeSrc: Inject token into src attributes of iframe tags
 HashFrameSrc: Inject token into src attributes of frame tags

« HashLocation: Inject token into URI destinations in response location headers

Note

Token injection is activated only when there is at least one usage of the
SecHashMethodPm or SecHashMethodRx directive in the ModSecurity configuration.

SecHashMethodRx

Description: Uses regular expressions to define which elements should receive the hash
engine’s security token.

SecHashMethodPm 281

Syntax: SecHashMethodRx ELEMENT TYPE REGEX

Default: None

Example: SecHashMethodRx HashHref "\.(aspx?|html|php)"
Directive type: Other (advanced feature)

Scope: Any

Version: 2.7.1

The SecHashMethodRx directive uses regular expressions to find elements that need to be
processed by the hash engine. The first parameter specifies the element type; the second
parameter specifies the regular expression to use for matching. It’s possible to issue this
directive multiple times for multiple element types or multiple times for the same element
type with different regular expressions. See SecHashMethodPm for a detailed list of the ele-
ment types.

Note

Be careful when using this directive with multiple inheriting configuration scopes.
If a parent scope selects an element for processing, it's not possible to undo its
decision in the child scope.

The following example adds a security token to all local links, passing over fully qualified
references to ensure that external entities don’t receive our token:

SecHashMethodRx HashHref "~(?!https?:\/\/)"

Warning

There are several ways to define a link. This makes it hard to construct a regular
expression that will catch all links all of the time. The previous example will fail on
external links defined without the protocol (e.g., //test.example.com/index.html),
a form of a link that’s rarely used but supported by all major browsers. Extensive
testing of the hash engine configuration with your content is necessary to reveal
problems as this.

Note

Token injection is activated only when there is at least one usage of the
SecHashMethodPm or SecHashMethodRx directive in the ModSecurity configuration.

SecHashParam

Description: Specifies the name of the URL parameter used to transport HMAC tokens
when the hash engine is active.

282 Chapter 15: Directives

Syntax: SecHashParam PARAMETER NAME
Default: crypt

Example: SecHashParam hmac

Directive type: Other (advanced feature)
Scope: Any

Version: 2.7.1

The HMAC token is appended to the links within the HTML body of the response. The
following fragment gives an example of what the output looks like after it has been changed
by ModSecurity:

<form action="/search?query=test8crypt=fb34fccbc5343a6b4276ce2abic8boocec7ecsf">

SecHttpBlKey

Description: This directive configures the API key for the Project Honey Pot HTTP black
list.

Syntax: SecHttpBlKey KEY

Default: None

Example: SecHttpBlKey 09f2b0e9-10f1-4e85
Directive type: Other (advanced feature)
Scope: Main, virtual host

Version: 2.7.0

An API key is required before the Project Honey Pot HTTP black list can be used; contact
the project to receive a registered to key to use this functionality.® This directive only
configures the API key; the @rbl operator is used to access the APL

SecInterceptOnError

Description: When enabled, this directive makes ModSecurity stop processing a phase
when a rule error occurs.

Syntax: SecInterceptOnError On|Off
Default: Off

Example: SecInterceptOnError On

8 Honeypot Project (Project Honey Pot, retrieved 5 January 2017)

SecHttpBlKey 283

https://www.projecthoneypot.org

Directive type: Configuration
Scope: Any
Version: 2.6.0

Rule errors are rare and are usually the result of a faulty rule (e.g., the @ipMatch operator
used against something that's not an IP address, or—more frequent, in this case—PCRE
limit errors when using the OWASP ModSecurity Core Rule Set). 7

Note

It is counterintuitive that SecInterceptOnError doesn't stop processing altogether
and drop a request immediately (or intercept it, so to speak). In that light, this
directive is of limited value in practice.

SecMarker

Description: Adds a fixed, alphanumeric rule marker that can be used as a target in a
skipAfter action.

Syntax: SecMarker MARKER

Default: None

Example: SecMarker WHITELISTING_END
Directive type: Rule language

Scope: Any

Version: 2.5.0

The SecMarker directive can be used to construct conditional if-then and if-then-else blocks.
For a complete example, see the section called “If-Then-Else ” in Chapter 6.

SecPcreMatchLimit

Description: Sets the match limit in the PCRE library.
Syntax: SecPcreMatchLimit LIMIT IN BYTES

Default: 1500

Example: SecPcreMatchLimit 100000

Directive type: Configuration

Scope: Main

T OWASP ModSecurity Core Rule Set (OWASP, retrieved 5 January 2017)

284 Chapter 15: Directives

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

Version: 2.5.12

PCRE uses two arbitrary limits to prevent using too much memory or processing power
when a regular expression is being processed. The PCRE limit configured with this directive
corresponds to the match limit field. More information is available on the pcreapi man

page.

Note

The default value for SecPcreMatchLimit is very low, which means that your rule-
sets will always need to set a different (sane) value. Head to the section called
“Regular Expression Denial of Service” in Chapter 9 for more information on this
topic.

SecPcreMatchLimitRecursion

Description: Sets the match limit recursion in the PCRE library.
Syntax: SecPcreMatchlLimitRecursion LIMIT_IN BYTES

Default: 1500

Example: SecPcreMatchLimitRecursion 100000

Directive type: Configuration

Scope: Main

Version: 2.5.12

PCRE uses two arbitrary limits to prevent using too much memory or processing power
when a regular expression is being processed. The PCRE limit configured with this directive
corresponds to the match limit recursion field. More information is available on the
pcreapi man page.

Note

The default value for SecPcreMatchLimit is very low, which means that your rule-
sets will always need to set a different (sane) value. Head to the section called
“Regular Expression Denial of Service” in Chapter 9 for more information on this
topic.

SecReadStatelLimit

This directive has been replaced by SecConnReadStateLimit starting with ModSecurity 2.8.0.

SecPcreMatchLimitRecursion 285

SecRemoteRules

Description: This directive allows you to load ModSecurity rules from a remote server
during the startup of the server. This can be useful if you want to keep your rules in a central
location.

Syntax: SecRemoteRules REMOTE_KEY REMOTE_URL

Default: None

Example: SecRemoteRules ProdWAF1 https://example.com/rules.txt
Directive type: Other (advanced feature)

Scope: Any

Version: 2.9.0

This directive can be used anywhere, but only once per server. To ensure transport security,
only HTTPS URLs are allowed. ModSecurity will use two requests to fetch the rules,
using the modsecurity user agent identification. Every request will provide certain metadata
specified in three special request headers:

o ModSec-unique-id: Contains an anonymous server identifier that remains stable across
requests.

« ModSec-status: Contains server information such as software and library version num-
bers; see SecStatusEngine for details.

 ModSec-key: Contains the key specified within the SecRemoteRules directive.

Warning

When using this directive, consider which SecRemoteRulesFailAction set-
ting will best match your setup. Be aware that the default setting for
SecRemoteRulesFailAction is Abort. If your server fails to load the remote rules
during startup, then an error log entry with the severity notice (!) will be issued
during the startup.

The error and audit log entries of the remote rules triggered on the local server will carry
remote server as the filename for any rule hits, and the line number will always be -1.

SecRemoteRulesFailAction

Description: Use this directive to define the behavior when remote rules can’t be loaded at
startup or during a restart and reload of the server.

Syntax: SecRemoteRulesFailAction Abort|Warn

Default: Abort

286 Chapter 15: Directives

Example: SecRemoteRulesFailAction Warn
Directive type: Other (advanced feature)
Scope: Any

Version: 2.9.0

Warning

When issuing a reload or graceful reload of the server, ModSecurity will also
attempt to reload any remote rules it has in the configuration. If SecRemoteRules is
set to Abort and the rules can’t be fetched, then the reload of the server is aborted
and a message indicating the problem is displayed on STDERR of the command
issuing the reload. However, there will be no information indicating the problem in
the error log of the server.

When set to Warn and the remote call fails, you lose the rules loaded from the
remote server previously.

Remote rule loading is an interesting feature, but using it correctly is hard. In fact, it’s so
hard that you’ll want to think twice before you use SecRemoteRules in a production setting.

If you use the default SecRemoteRulesFailAction setting of Abort, you create a point of
failure in your system. If the remote server is under your control, you need to make sure the
server is accessible and remains accessible for every restart of a server. This sounds easy, but
it might prove a liability in an emergency. If the remote server isn't under your control, then
you introduce a dependency on a different organization, which could be a problem—unless
you really trust that organization and the accessibility of its server.

On the other hand, if you set SecRemoteRulesFailAction to Warn, then problems accessing
the remote server will mean that your server loses the previously loaded remote rules and
might miss attacks because of it. To make matters worse, in this case your error log won’t
contain an indication that you're not running with your full rules.

In an extreme scenario, a DoS attack on the server containing your remote rules or on your
connection to it might also be used as a way of bypassing your defense.

Note

If you want to set this directive to Warn, then SecRemoteRulesFailAction has to be
issued before the SecRemoteRules directive.

SecRequestBodyAccess

Description: Configures whether request bodies will be buffered and processed by ModSe-
curity.

SecRequestBodyAccess 287

Syntax: SecRequestBodyAccess On|Off
Default: Off

Example: SecRequestBodyAccess On
Directive type: Configuration

Scope: Any

Version: 2.0.0

This directive is required if you want to inspect the data transported in request bodies (e.g.,
POST parameters, file uploads). Request buffering is also required in order to make reliable
blocking possible.

The possible values are as follows:
o On: Buffer and process request bodies

o O0ff: Don't buffer request bodies

SecRequestBodyInMemorylLimit

Description: Configures the maximum request body size that ModSecurity will store in
memory.

Syntax: SecRequestBodyInMemoryLimit LIMIT_IN BYTES
Default: 131072 (128 KB)

Example: SecRequestBodyInMemoryLimit 262144
Directive type: Configuration

Scope: Any

Version: 2.0.0

When a multipart/form-data request is being processed, the request body will be redirected
into a temporary file on disk once the in-memory limit is reached.

SecRequestBodyLimit

Description: Configures the maximum request body size ModSecurity will accept for
buffering.

Syntax: SecRequestBodyLimit LIMIT IN BYTES
Default: 134217728 (128 MB)
Example: SecRequestBodyLimit 262144

Directive type: Configuration

288 Chapter 15: Directives

Scope: Any
Version: 2.0.0

Anything over the limit will be rejected with HTTP status code 413 (Request Entity Too
Large) by default. There is a hard limit of 1 GB.

SecRequestBodyLimitAction

Description: Controls what happens once a request body limit configured with
SecRequestBodyLimit and SecRequestBodyNoFilesLimit is encountered.

Syntax: SecRequestBodyLimitAction Reject|ProcessPartial

Default (blocking mode): SecRequestBodyLimitAction Reject

Default (detection-only mode): SecRequestBodyLimitAction ProcessPartial
Example: SecRequestBodyLimitAction ProcessPartial

Directive type: Configuration

Scope: Any

Version: 2.6.0

By default, ModSecurity will reject a request body that’s longer than specified. Some sites
may not want to allow ModSecurity to reject requests, and they can use this directive
to instruct ModSecurity to proceed even when it has only a partial request body. The
INBOUND_DATA ERROR flag will be raised when ModSecurity has only a partial request body.

SecRequestBodyNoFilesLimit

Description: Configures the maximum request body size ModSecurity will accept for
buffering, excluding the size of any files being transported in the request.

Syntax: SecRequestBodyNoFilesLimit LIMIT IN_BYTES
Default: 1048576 (1 MB)

Example: SecRequestBodyLimit 65536

Directive type: Configuration

Scope: Any

Version: 2.5.0

This directive is useful to reduce susceptibility to DoS attacks when someone is sending
request bodies of very large sizes. Web applications that require file uploads must configure
SecRequestBodyLimit to a high value, but because large files are streamed to disk, file
uploads won't increase memory consumption. However, it’s still possible for someone to

SecRequestBodyLimitAction 289

take advantage of a large request body limit and send nonupload requests with large body
sizes. This directive eliminates that loophole.

In general, the default value isn’t small enough. For most applications, you should be able to
reduce it down to 128 KB or lower. Anything over the limit will be rejected with status code
413 (Request Entity Too Large) by default. There is a hard limit of 1 GB.

SecResponseBodyAccess

Description: Configures whether response bodies are to be buffered and processed.
Syntax: SecResponseBodyAccess On|Off

Default: Off

Example: SecResponseBodyAccess On

Directive type: Configuration

Scope: Any

Version: 2.0.0

This directive is required if you plan to inspect HTML responses and implement response
blocking.

Possible values are as follows:

o On: Buffer response bodies (but only if the response MIME type matches the list
configured with SecResponseBodyMimeType) and process them

o O0ff: Don't buffer response bodies

SecResponseBodyLimit

Description: Configures the maximum response body size that will be accepted for buffer-
ing.

Syntax: SecResponseBodyLimit LIMIT IN BYTES

Default: 524228 (512 KB)

Example: SecResponseBodyLimit 2096912

Directive type: Configuration

Scope: Any

Version: 2.0.0

290 Chapter 15: Directives

Anything over this limit will be rejected with status code 500 (Internal Server Error) by
default. This setting will not affect responses with MIME types that aren’t selected for
buffering. There is a hard limit of 1 GB.

SecResponseBodyLimitAction

Description: Controls what happens once a response body limit, configured with
SecResponseBodyLimit, is encountered.

Synt